EI331 Signals and Systems Lecture 15 Bo Jiang John Hopcroft Center for Computer Science Shanghai Jiao Tong University April 16, 2019
Contents 1. Recap 2. Properties of CT Fourier Transform 1/32 w
Recap: Fourier Transform for L 1 ( R ) Functions Fourier transform and its inverse as principal values � T x ( t ) e − j ω t dt F { x } ( j ω ) = lim T →∞ − T � W 1 F − 1 ( X )( t ) = lim X ( j ω ) e j ω t d ω 2 π W →∞ − W Theorem. (Pointwise inversion) 1. If x ∈ L 1 ( R ) satisfies Dirichlet conditions on all finite intervals, ( F − 1 ◦ F { x } )( t ) = x ( t + ) + x ( t − ) , ∀ t 2 2. If X ∈ L 1 ( R ) satisfies Dirichlet conditions on all finite intervals, ( F ◦ F − 1 { X } )( j ω ) = X ( j ω + ) + X ( j ω − ) , ∀ ω 2 3. If x ∈ C ( R ) ∩ L 1 ( R ) and F { x } ∈ L 1 ( R ) , then F − 1 ◦ F { x } = x 2/32 w
Recap: Fourier Transform for L 1 ( R ) Functions Fourier transform pairs case x ( t ) X ( j ω ) 1 e − at u ( t ) , 1 Re a > 0 a + j ω 2 a e − a | t | , 3 Re a > 0 a 2 + ω 2 a e − ω 2 e − at 2 , � π 3 a > 0 4 a 2 sin( ω T ) 1 u ( t + T ) − u ( t − T ) ω sin( ω c t ) 2 u ( ω + ω c ) − u ( ω − ω c ) π t 3/32 w
Recap: Fourier Transform for Generalized Functions Schwarz space S = S ( R ) of rapidly decreasing functions S = { φ ∈ C ∞ ( R ) : � φ � ℓ, k < ∞ , ∀ ℓ, k ∈ N } where � φ � ℓ, k = sup t ∈ R | t ℓ φ ( k ) ( t ) | . Note F { S } = S . Fourier transform of tempered distributions � ( x , φ ) � x ( ξ ) φ ( ξ ) d ξ R • If x n → x in distribution, then F { x } � lim n F { x n } in distribution ⇒ ( F { x } , φ ) � lim ( x , φ ) = lim n ( x n , φ ) = n ( F { x n } , φ ) , ∀ φ ∈ S ( F { x } , φ ) � ( x , F { φ } ) , • Alternatively, ∀ φ ∈ S 4/32 w
Recap: Fourier Transform for Generalized Functions Fourier transform pairs x ( t ) X ( j ω ) δ ( t ) 1 e − j ω t 0 δ ( t − t 0 ) 2 πδ ( ω ) 1 e j ω 0 t 2 πδ ( ω − ω 0 ) � � δ ( t − t 0 ) e − j ω t dt = e − j ω t 0 , e j ( ω 1 − ω 2 ) t dt = 2 πδ ( ω 1 − ω 2 ) R R � � � � X ( j ω ) e j ω t d ω = x ( τ ) e j ω ( t − τ ) d τ d ω = x ( τ ) 2 πδ ( t − τ ) d τ = 2 π x ( t ) R R R R 5/32 w
Recap: Fourier Transform for Periodic Functions Fourier series ∞ � x [ k ] e jk ω 0 t x ( t ) = ˆ k = −∞ Fourier transform ∞ � X ( j ω ) = 2 π ˆ x [ k ] δ ( ω − k ω 0 ) k = −∞ Equivalent representations • ˆ x [ k ] is amplitude of component at ω k = k ω 0 • ˆ x [ k ] δ ( ω − k ω 0 ) is density of component at ω k = k ω 0 Cf. discrete random variable x in probability � � � E f ( X ) = f ( x n ) p n = f ( x ) p ( x ) dx with p ( x ) = p n δ ( x − x n ) R n n 6/32 w
Recap: Relation between FS and FT • Aperiodic signal x with finite support of length < T • Periodic extension x T of x ∞ � x T ( t ) = x ( t − kT ) k = −∞ NB. In other words, x is one period of periodic signal x T x T [ k ] = 1 F x ← − − → X ˆ T X ( jk ω 0 ) FS ← − − → ˆ x T x T ∞ F � ← − − → X T X T ( j ω ) = 2 π ˆ x T [ k ] δ ( ω − k ω 0 ) x T k = −∞ ω 0 = 2 π ∞ � = ω 0 X ( jk ω 0 ) δ ( ω − k ω 0 ) T k = −∞ 7/32 w
Contents 1. Recap 2. Properties of CT Fourier Transform 8/32 w
Properties of CT Fourier Transform Linearity F { ax + by } = a F { x } + b F { y } Time shifting F → e − j ω t 0 X ( j ω ) F { τ t 0 x } = E − t 0 F { x } x ( t − t 0 ) ← − − or where ( E a f )( s ) = e jas f ( s ) Proof. � � � x ( t − t 0 ) e − j ω t dt = x ( s ) e − j ω ( s + t 0 ) ds = e − j ω t 0 x ( s ) e − j ω s ds R R R Frequency shifting F e j ω 0 t x ( t ) F { E ω 0 x } = τ ω 0 ˆ or ← − − → X ( j ( ω − ω 0 )) x 9/32 w
Example: Multipath Effect Transmitter: x ( t ) x ( t ) y ( t ) Receiver: y ( t ) = a 0 x ( t ) + a 1 x ( t − τ ) Y ( j ω ) = a 0 X ( j ω ) + a 1 e − j ωτ X ( j ω ) = ( a 0 + a 1 e − j ωτ ) X ( j ω ) | X ( j ω ) | Let x ( t ) = u ( t + T ) − u ( t − T ) . 2 T X ( j ω ) = 2 sin( ω T ) π ω 0 T ω | Y ( j ω ) | Y ( j ω ) = ( a 0 + a 1 e − j ωτ ) 2 sin( ω T ) 4 T ω For a 0 = a 1 = 1 , 2 )sin( ω T ) Y ( j ω ) = 4 e − j ωτ/ 2 cos( ωτ π π ω τ T ω 10/32 w
Example: Modulation x ( t ) 1 Baseband signal: x ( t ) − T t T Modulated signal X ( j ω ) y ( t ) = x ( t ) cos( ω c t ) = 1 2 x ( t )( e j ω c t + e − j ω c t ) 2 T Y ( j ω ) = 1 2 X ( j ( ω − ω c )) + 1 2 X ( j ( ω + ω c )) π ω 0 T For x ( t ) = u ( t + T ) − u ( t − T ) , y ( t ) 1 Y ( j ω ) = sin(( ω − ω c ) T ) + sin(( ω + ω c ) T ) ω − ω c ω + ω c − T t T Y ( j ω ) T ω c ω − ω c 0 11/32 w
Properties of CT Fourier Transform Time reversal F F { Rx } = R F { x } or x ( − t ) ← − − → X ( − j ω ) Conjugation F F { x ∗ } = R F { x } x ∗ ( t ) → X ∗ ( − j ω ) or ← − − � ∗ = X ∗ ( − j ω ) Proof. F { x ∗ } ( j ω ) = R x ∗ ( t ) e − j ω t dt = R x ( t ) e j ω t dt � �� Symmetry • x even ⇐ ⇒ X even, x odd ⇐ ⇒ X odd • x real ⇐ ⇒ X ( − j ω ) = X ∗ ( j ω ) • x real and even ⇐ ⇒ X real and even • x real and odd ⇐ ⇒ X purely imaginary and odd 12/32 w
Example For a > 0 , x ( t ) � e − at , t > 0 1 x ( t ) = − e at , t < 0 O t − 1 Let y ( t ) = e − at u ( t ) , with | X ( j ω ) | 1 / a 1 Y ( j ω ) = a + j ω Since x ( t ) = y ( t ) − y ( − t ) . ω − a a O X ( j ω ) = Y ( j ω ) − Y ( − j ω ) arg X ( j ω ) − 2 j ω 1 1 π = a + j ω − a − j ω = 2 a 2 + ω 2 O ω − π 2 x real & odd, X purely imaginary & odd 13/32 w
Time and Frequency Scaling For a � = 0 , � j ω � F { S a x } = 1 → 1 F a F { x } or x ( at ) ← − − | a | S 1 | a | X a Proof. Change variables by τ = at . For a > 0 , � ∞ � ∞ � j ω � a τ d τ a = 1 x ( at ) e − j ω t dt = x ( τ ) e − j ω aX a −∞ −∞ For a < 0 , � ∞ � −∞ � j ω � a τ d τ a = − 1 x ( at ) e − j ω t dt = x ( τ ) e − j ω aX a −∞ ∞ 14/32 w
Time and Frequency Scaling � j ω � F { S a x } = 1 → 1 F a F { x } or x ( at ) ← − − | a | S 1 | a | X a compression in time ⇐ ⇒ stretching in frequency stretching in time ⇐ ⇒ compression in frequency e.g. audio: faster playback = ⇒ higher pitch √ π X ( j ω ) F | a | e − 1 x ( t ) = e − ( at ) 2 a ) 2 4 ( ω ← − − → X ( j ω ) = x ( t ) a = 1 / 2 a = 1 a = 2 ω t 15/32 w
Differentiation F F x ′ ( t ) x ( k ) ( t ) → ( j ω ) k X ( j ω ) ← − − → j ω X ( j ω ) , ← − − Proof. Differentiate under integral sign � � x ( t ) = 1 ⇒ x ′ ( t ) = 1 X ( j ω ) e j ω t d ω = j ω X ( j ω ) e j ω t d ω 2 π 2 π R R y = x ′ is output of differentiator with frequency response � δ ′ ( t ) e − j ω t dt = − d dte − j ω t � H ( j ω ) = F { δ ′ } ( j ω ) = 0 = j ω � � R • Y ( j ω ) = H ( j ω ) X ( j ω ) | H ( j ω ) | • amplifies high frequencies • suppresses low frequencies • DC completely eliminated ω 0 16/32 w
Integration � t → Y ( j ω ) = 1 F y ( t ) = x ( τ ) d τ ← − − j ω X ( j ω ) + π X ( 0 ) δ ( ω ) −∞ Since x ( t ) = y ′ ( t ) , by differentiation property ⇒ Y ( j ω ) = 1 X ( j ω ) = j ω Y ( j ω ) = j ω X ( j ω ) for ω � = 0 Intuitively, y ( t ) has DC component � T � T 1 1 � ¯ y = lim y ( t ) dt = lim x ( τ ) u ( t − τ ) d τ dt 2 T 2 T T →∞ T →∞ − T − T R � T � � � 1 d τ = 1 = x ( τ ) lim u ( t − τ ) dt 2 X ( 0 ) 2 T T →∞ − T R So Y also has component 2 π ¯ y δ ( ω ) = π X ( 0 ) δ ( ω ) 17/32 w
Integration Example. Unit step function u ( t ) � t 1 u ( t ) = δ ( τ ) d τ 1 2 −∞ O t U ( j ω ) = 1 j ω F { δ } ( j ω ) + π F { δ } ( 0 ) δ ( ω ) | U ( j ω ) | = 1 j ω + πδ ( ω ) π Example. Sign function ω O � 1 , t > 0 sgn( t ) = sgn( t ) − 1 t < 0 1 Since sgn = 2 u − 1 , O F { sgn } ( j ω ) = 2 U ( j ω ) − 2 πδ ( ω ) = 2 t − 1 j ω 18/32 w
Integration Example. Unit ramp function u − 2 ( t ) = tu ( t ) � t u − 2 ( t ) = u ( τ ) d τ −∞ Integration property suggests ω 2 + π F { u − 2 } ( j ω ) = 1 j ω U ( j ω ) + π U ( 0 ) δ ( ω ) = − 1 j ωδ ( ω ) + π U ( 0 ) δ ( ω ) But what’s U ( 0 ) = 1 j 0 + πδ ( 0 ) ? What’s π j ω δ ( ω ) ? Not well-defined! Integration property not applicable here! Will see F { u − 2 } = − 1 ω 2 + j πδ ′ ( ω ) Rule of thumb. Applicable when formula is well-defined 19/32 w
Example x 1 � 1 − 2 | t | � � � u ( t + T 2 ) − u ( t − T x ( t ) = 2 ) T O t − T T 2 2 � ω T � X 2 ( j ω ) = 2 2 ] = − 8 T [ e j ω T 2 − 2 + e − j ω T T sin 2 x 1 = x ′ 4 2 + π X 2 ( 0 ) δ ( ω ) = − 8 sin 2 � ω T T T � X 1 ( j ω ) = X 2 ( j ω ) 2 4 O t j ω j ω T − T 2 − 2 T + π X 1 ( 0 ) δ ( ω ) = 8 sin 2 � ω T � X ( j ω ) = X 1 ( j ω ) 4 x 2 = x ′′ j ω ω 2 T 2 2 T T X ( j ω ) T 2 O t − T T 2 2 − 4 ω T 0 20/32 w
Recommend
More recommend