EI331 Signals and Systems Lecture 28 Bo Jiang John Hopcroft Center for Computer Science Shanghai Jiao Tong University June 4, 2019
Contents 1. Analysis of DT LTI Systems by Z -transform 2. Block Diagram Representations 3. Unilateral Z -transform 1/38
DT System Function Recall the response of a DT LTI system to the input x [ n ] is y [ n ] = ( x ∗ h )[ n ] where h is the impulse response of the system. If x and h have z -transforms, the convolution property implies Y ( z ) = X ( z ) H ( z ) in their common ROC. If the ROC has a nonempty interior point, the system function (aka transfer function) H ( z ) uniquely determines h and hence system properties through the Laurent series expansion ∞ � h [ n ] z − n H ( z ) = n = −∞ 2/38
Causality Recall h is right-sided iff its ROC is the exterior of a circle, i.e. R 1 < | z | < ∞ ∞ � h [ n ] z − n H ( z ) = n = N 1 The following conditions are equivalent 1. N 1 ≥ 0 ∞ � h [ n ] z n is a convergent power series on | z | < 2. H ( z − 1 ) = 1 R 1 n = N 1 3. 0 is a removable singularity of H ( z − 1 ) 4. ∞ is removable singularity of H ( z ) z → 0 H ( z − 1 ) exists and is finite 5. lim z →∞ H ( z ) exists and is finite 1 6. lim 1 This is the more precise statement of ∞ ∈ ROC. 3/38
Causality An LTI system with system function H ( z ) is causal iff 1. the ROC is the exterior of a circle 2. lim z →∞ H ( z ) exists and is finite causal ⇐ ⇒ ROC is the exterior of a circle including ∞ An LTI system with rational system function H ( z ) = N ( z ) D ( z ) is causal iff 1. the ROC is | z | > | p | , where p is the outermost pole 2. deg D ≥ deg N Example. H ( z ) = z 3 − 2 z 2 − z 8 cannot be the system function of a z 2 + 1 4 z + 1 causal system. 4/38
Stability Recall an LTI system is stable iff its impulse response h ∈ ℓ 1 , i.e. ∞ � | h [ n ] | < ∞ n = −∞ i.e. H ( z ) converges absolutely on the unit circle | z | = 1 , so its ROC R 1 < | z | < R 2 must satisfy R 1 < 1 < R 2 . stable ⇐ ⇒ ROC includes the unit circle | z | = 1 A causal LTI system with rational system function H ( z ) is stable iff all its poles are inside the unit circle. 1 Example. A causal system with H ( z ) = 1 − az − 1 is stable iff | a | < 1 1 Example. A system with H ( z ) = 1 − az − 1 where | a | > 1 and ROC | z | < | a | is also stable, but it is noncausal. 5/38
Example � � Im H ( z ) = 1 z z − z − 3 z + 1 2 2 2 There are two poles p 1 = − 1 2 and p 2 = 3 2 . X X Re 1. | z | > 3 2 , causal, unstable 1 3 − 1 2 2 � 3 � n � � n h 1 [ n ] = 1 u [ n ] − 1 − 1 u [ n ] 2 2 2 2 2 < | z | < 3 1 2. 2 , noncausal, stable � 3 � n � � n h 2 [ n ] = − 1 u [ − n − 1 ] − 1 − 1 u [ n ] 2 2 2 2 3. | z | < 1 2 , noncausal, unstable � 3 � n � � n h 3 [ n ] = − 1 u [ − n − 1 ]+ 1 − 1 u [ − n − 1 ] 2 2 2 2 6/38
Linear Constant-coefficient Difference Equations LTI system with input and output related by N M � � a k y [ n − k ] = b k x [ n − k ] k = 0 k = 0 Take z -transform of both sides N M � � a k z − k Y ( z ) = b k z − k X ( z ) k = 0 k = 0 so � M k = 0 b k z − k H ( z ) = Y ( z ) X ( z ) = � N k = 0 a k z − k System function is always rational Difference equation does not specify ROC! Need additional conditions (e.g. stability, causality) to determine h [ n ] . 7/38
Example Consider LTI system with input and output related by y [ n ] − 1 2 y [ n − 1 ] = x [ n ] + 1 3 x [ n − 1 ] System function H ( z ) = 1 + 1 3 z − 1 1 − 1 2 z − 1 Two possibilities for ROC: | z | > 1 2 and | z | < 1 2 . 1. If | z | > 1 2 � 1 � n � 1 � n ∞ 1 � Z − 1 z − n 2 z − 1 = ← − − → u [ n ] 1 − 1 2 2 n = 0 By linearity and time-shifting property, � 1 � n � 1 � n − 1 u [ n ] + 1 h [ n ] = u [ n − 1 ] 2 3 2 8/38
Example (cont’d) Consider LTI system with input and output related by y [ n ] − 1 2 y [ n − 1 ] = x [ n ] + 1 3 x [ n − 1 ] System function H ( z ) = 1 + 1 3 z − 1 1 − 1 2 z − 1 Two possibilities for ROC: | z | > 1 2 and | z | < 1 2 . 2. If | z | < 1 2 � 1 � n ∞ − 2 z 1 � Z − 1 2 n z n 2 z − 1 = 1 − 2 z = − ← − − → − u [ − n − 1 ] 1 − 1 2 n = 1 By linearity and time-shifting property, � 1 � n � 1 � n − 1 u [ − n − 1 ] − 1 h [ n ] = − u [ − n ] 2 3 2 9/38
Example (cont’d) Consider LTI system with input and output related by y [ n ] − 1 2 y [ n − 1 ] = x [ n ] + 1 3 x [ n − 1 ] If we use Fourier transform, then frequency response is H ( e j ω ) = 1 + 1 3 e − j ω 1 − 1 2 e − j ω and � 1 � n � 1 � n − 1 u [ n ] + 1 h [ n ] = u [ n − 1 ] 2 3 2 Why only one possibility? • Fourier transform method assumes stability, requiring that ROC of H ( z ) contain the unit circle, i.e. | z | > 1 2 • In general, not applicable to unstable systems 10/38
Example Consider LTI system with input and output related by y [ n ] − 3 4 y [ n − 1 ] + 1 8 y [ n − 2 ] = 2 x [ n ] System function 2 H ( z ) = 4 z − 1 + 1 1 − 3 8 z − 2 By partial fraction expansion 2 4 2 H ( z ) = 4 z − 1 ) = 2 z − 1 − ( 1 − 1 2 z − 1 )( 1 − 1 1 − 1 1 − 1 4 z − 1 Take inverse z -transform to obtain impulse response � 1 � n u [ n ] − 2 � 1 � n u [ n ] , ROC: | z | > 1 h 1 [ n ] = 4 2 4 2 � 1 � n u [ − n − 1 ] − 2 � 1 � n u [ n ] , ROC: 1 4 < | z | < 1 h 2 [ n ] = − 4 2 4 2 � 1 � n u [ − n − 1 ] + 2 � 1 � n u [ − n − 1 ] , ROC: | z | < 1 h 3 [ n ] = − 4 2 4 4 11/38
Example (cont’d) � 1 � n u [ n ] . Find response to x [ n ] = 4 1 | z | > 1 X ( z ) = 4 z − 1 , 1 − 1 4 z -transform of response 2 1 Y ( z ) = H ( z ) X ( z ) = 4 z − 1 ) · 4 z − 1 , ( 1 − 1 2 z − 1 )( 1 − 1 1 − 1 NB. Output well-defined only for | z | > 1 2 and 1 4 < | z | < 1 2 ! Exercise. Verify that h 3 ∗ x is not well-defined. By partial fraction expansion (see slides 20-22 of Lecture 19) 4 2 8 Y ( z ) = − 4 z − 1 − 4 z − 1 ) 2 + 1 − 1 ( 1 − 1 1 − 1 2 z − 1 Take inverse z -transform to obtain response for first two cases. 12/38
1 Inverse Z -transform of ( 1 − az − 1 ) n Recall ∞ 1 � a n ζ n , 1 − a ζ = | a ζ | < 1 n = 0 and − 1 1 � a n ζ n , 1 − a ζ = − | a ζ | > 1 n = −∞ Repeat the derivation on slide 23 of Lecture 19, and let ζ = z − 1 , � n + m − 1 � 1 Z a n u [ n ] ← − − → ( 1 − az − 1 ) m , | z | > | a | m − 1 and � − n − 1 � 1 Z ( − 1 ) m a n u [ − n − m ] ← − − → ( 1 − az − 1 ) m , | z | < | a | m − 1 13/38
Example Im Causal LTI system described by − 2 y [ n ] − 1 2 y [ n − 1 ] = x [ n ] + 2 3 3 x [ n − 1 ] X Re 1 1 2 Find response to x [ n ] = ( − 2 3 ) n u [ n ] Im H ( z ) = 1 + 2 3 z − 1 | z | > 1 2 z − 1 , 1 − 1 2 X Re 1 | z | > 2 X ( z ) = 3 z − 1 , − 2 1 3 1 + 2 3 � 1 � n 1 2 z − 1 , | z | > 1 Im Y ( z ) = 2 = ⇒ y [ n ] = u [ n ] 1 − 1 2 ROC of Y is larger than intersection of ROCs X Re of X and H due to pole-zero cancellation at 1 1 2 z = − 2 3 . 14/38
Example Suppose an LTI system satisfies the following, 2 ) n + 10 ( 1 1. output for input x 1 [ n ] = ( 1 6 ) n u [ n ] is y 1 [ n ] = [ a ( 1 3 ) n ] u [ n ] 2. output for input x 2 [ n ] = ( − 1 ) n is y 2 [ n ] = 7 4 ( − 1 ) n Want to find H ( z ) . 1 | z | > 1 X 1 ( z ) = 6 z − 1 , 1 − 1 6 a 10 | z | > 1 Y 1 ( z ) = 2 z − 1 + 3 z − 1 , 1 − 1 1 − 1 2 System function X 1 ( z ) = [( a + 10 ) − ( 5 + a 3 ) z − 1 ][ 1 − 1 6 z − 1 ] H ( z ) = Y 1 ( z ) , ( 1 − 1 2 z − 1 )( 1 − 1 3 z − 1 ) ⇒ H ( z ) = ( 1 − 2 z − 1 )( 1 − 1 6 z − 1 ) By 2, H ( − 1 ) = 7 4 = ⇒ a = − 9 = ( 1 − 1 2 z − 1 )( 1 − 1 3 z − 1 ) 15/38
Example (cont’d) Three possibilities for ROC of H ( z ) = ( 1 − 2 z − 1 )( 1 − 1 6 z − 1 ) ( 1 − 1 2 z − 1 )( 1 − 1 3 z − 1 ) • | z | < 1 3 • 1 3 < | z | < 1 2 • | z | > 1 2 By the convolution property, ROC of Y 1 contains the intersection ⇒ ROC of H is | z | > 1 of the ROCs of X 1 and H = 2 = ⇒ stable. Also H ( ∞ ) = 1 is finite = ⇒ causal 6 z − 1 + 1 H ( z ) = 1 − 13 3 z − 2 6 z − 1 + 1 1 − 5 6 z − 2 Difference equation y [ n ] − 5 6 y [ n − 1 ] + 1 6 y [ n − 2 ] = x [ n ] − 13 6 x [ n − 1 ] + 1 3 x [ n − 2 ] 16/38
Contents 1. Analysis of DT LTI Systems by Z -transform 2. Block Diagram Representations 3. Unilateral Z -transform 17/38
System Interconnections LTI systems in series connection Y = ( XH 1 ) H 2 = X ( H 1 H 2 ) = ( XH 2 ) H 1 H = H 1 H 2 H 1 ( z ) H 2 ( z ) y x H ( z ) commutative y H = H 2 H 1 x H 2 ( z ) H 1 ( z ) H ( z ) 18/38
System Interconnections LTI systems in systems in parallel connection h 1 y h = h 1 + h 2 x + h 2 h H 1 ( z ) y H = H 1 + H 2 x + H 2 ( z ) H ( z ) 19/38
System Interconnections LTI systems in systems in feedback connection + + y x h 1 - y = h 1 ∗ ( x − h 2 ∗ y ) h 2 h = ? h + + y Y = H 1 X − H 1 H 2 Y H 1 ( z ) x - H 2 ( z ) H = Y H 1 X = 1 + H 1 H 2 H ( z ) 20/38
Recommend
More recommend