drift estimation for differential equations driven by
play

Drift estimation for differential equations driven by fractional - PowerPoint PPT Presentation

Drift estimation for differential equations driven by fractional Brownian motions Samy Tindel Purdue University University of Tennessee - Probability Seminar 2015 Ongoing joint works with Fabien Panloup and Eulalia Nualart Samy T. (Purdue)


  1. Drift estimation for differential equations driven by fractional Brownian motions Samy Tindel Purdue University University of Tennessee - Probability Seminar 2015 Ongoing joint works with Fabien Panloup and Eulalia Nualart Samy T. (Purdue) Drift estimation UTN 2015 1 / 25

  2. Outline Introduction 1 Setting of the problem Estimation for systems driven by fBm: brief review Generalized least squares estimator 2 LAN property 3 Samy T. (Purdue) Drift estimation UTN 2015 2 / 25

  3. Outline Introduction 1 Setting of the problem Estimation for systems driven by fBm: brief review Generalized least squares estimator 2 LAN property 3 Samy T. (Purdue) Drift estimation UTN 2015 3 / 25

  4. Outline Introduction 1 Setting of the problem Estimation for systems driven by fBm: brief review Generalized least squares estimator 2 LAN property 3 Samy T. (Purdue) Drift estimation UTN 2015 4 / 25

  5. Definition of fBm Definition 1. A 1-d fBm is a continuous process B = { B t ; t ∈ R } such that B 0 = 0 and for H ∈ (0 , 1): B is a centered Gaussian process 2 ( | s | 2 H + | t | 2 H − | t − s | 2 H ) E [ B t B s ] = 1 d -dimensional fBm: B = ( B 1 , . . . , B d ), with B i independent 1-d fBm Variance of increments: E [ | δ B j st | 2 ] ≡ E [ | B j t − B j s | 2 ] = | t − s | 2 H Samy T. (Purdue) Drift estimation UTN 2015 5 / 25

  6. Examples of fBm paths H = 0 . 3 H = 0 . 5 H = 0 . 7 Samy T. (Purdue) Drift estimation UTN 2015 6 / 25

  7. System under consideration Equation: � t d � σ j B j Y t = y 0 + 0 b ( Y s ; θ ) ds + t , t ∈ [0 , τ ] . (1) j =1 Coefficients: y 0 ∈ R d fixed. θ ∈ Θ, where Θ compact set of R q ( x , θ ) ∈ R d × Θ �→ b ( x ; θ ) ∈ R d smooth enough � b ( x ; θ ) − b ( y ; θ ) , x − y � ≤ − α | x − y | 2 ( B 1 , . . . , B d ) collection of d -dimensional fBms σ = ( σ 1 , . . . , σ d ) ∈ R d × d invertible Samy T. (Purdue) Drift estimation UTN 2015 7 / 25

  8. Basic aim Objective: Estimate parameter θ with one observation of path for Y Example: Two Ornstein-Uhlenbeck type processes 0.8 4 3 0.4 2 1 0.0 0 −0.4 −1 0 2 4 6 8 10 0 2 4 6 8 10 Figure: H = 0 . 7, d = 1, b ( x ) = − 3 x Figure: H = 0 . 7, d = 1, b ( x ) = − 0 . 1 x Samy T. (Purdue) Drift estimation UTN 2015 8 / 25

  9. A motivation from biophysics Source: Series of papers by S. Kou Anomalous fluctuations: New observations at molecule scale Fluctuations, end of a protein ֒ → changes in shape of protein Subdiffusive behavior for fluctuations. Mathematical model: � t −∞ K H ( t − u ) Y u du + (2 ζ k B T ) 1 / 2 dB t m dY t = − ζ Friction coefficient ζ to be estimated from observation Samy T. (Purdue) Drift estimation UTN 2015 9 / 25

  10. Outline Introduction 1 Setting of the problem Estimation for systems driven by fBm: brief review Generalized least squares estimator 2 LAN property 3 Samy T. (Purdue) Drift estimation UTN 2015 10 / 25

  11. Estimation of σ and H Notation: On a finite interval [0 , τ ] we set δ Y st = Y t − Y s i = i τ For n ≥ 1, take t n n Estimator: ˆ H n consistent and asymptotically normal with � 2 � � 2 n δ Y t 2 n H n = 1 2 − ln( R n ) k − 1 t 2 n k =1 ˆ R n = k � 2 , and 2 ln(2) � � n δ Y t n k − 1 t n k =1 k Extensions: Joint estimation of ( σ, H ) Use of filters (weights on increments δ Y t n k ) k − 1 t n Contributors: León-Berzin, Kubilius-Mishura, Brouste-Iacus Samy T. (Purdue) Drift estimation UTN 2015 11 / 25

  12. Drift estimation for H > 1 / 2 known Fractional Ornstein-Uhlenbeck: For θ ∈ R , set � t Y t = θ 0 Y s ds + B t A fractional kernel: Define k H ( t , s ) = c H s 1 / 2 − H ( t − s ) 1 / 2 − H Fundamental semi-martingale and tilted drift: Set � t � t � � t 2 H − 1 Z t + 0 r 2 H − 1 dZ r Z t = 0 k H ( t , s ) dY s , and Q t = c H Estimator: � t 0 Q s dZ s ˆ θ t = c H � t s s 1 − 2 H ds 0 Q 2 Samy T. (Purdue) Drift estimation UTN 2015 12 / 25

  13. Drift estimation for H > 1 / 2 known (2) FOU case: ˆ θ t is consistent ֒ → Kleptsyna - Le Breton Extension: If drift is θ b ( x ), consistent estimator ֒ → Tudor - Viens, Mishura - Schevshenko Problem: Numerically, estimators perform poorly ֒ → Due to singularity of kernel k H Estimator without weights: for FOU, � 2 � − 1 � n k =1 Y 2 2 H ˆ k n θ n = c H σ 2 is consistent and asymptotically Gaussian (Hu-Nualart). Samy T. (Purdue) Drift estimation UTN 2015 13 / 25

  14. Drift estimation, nonlinear cases Case of interest: general drift b ( x ; θ ) Contribution 1: Ladroue-Papavasiliou Polynomial coefficients Based on rough paths analysis Method of moments Contribution 2: Neuenkirch-T Coercive drift � b ( x ; θ ) − b ( y ; θ ) , x − y � ≤ − α | x − y | 2 Based on ergodic properties Least square estimator Samy T. (Purdue) Drift estimation UTN 2015 14 / 25

  15. Outline Introduction 1 Setting of the problem Estimation for systems driven by fBm: brief review Generalized least squares estimator 2 LAN property 3 Samy T. (Purdue) Drift estimation UTN 2015 15 / 25

  16. Setting � t j =1 σ j B j � d Equation: Y t = y 0 + 0 b ( Y s ; θ 0 ) ds + t Observation: { Y k τ n α ; k ≤ n } with α < 1 and unknown θ 0 Main assumption 1: � b ( x ; θ ) − b ( y ; θ ) , x − y � ≤ − α | x − y | 2 (2) Ergodic behavior: Under Hypothesis (2), Unique invariant measure ν θ for L ( Y t ) Ergodic convergence towards stationary solution ¯ Y = ¯ Y ( θ ) Main assumption 2: Identifiability, For all θ ∈ Θ , ν θ = ν θ 0 ⇐ ⇒ θ = θ 0 Samy T. (Purdue) Drift estimation UTN 2015 16 / 25

  17. Least square procedure (with F. Panloup) Numerical approximation of ¯ Y : for a small γ > 0, define X γ,θ → Numerical approx. of ¯ ֒ Y obtained with Euler scheme, step γ Theorem 2. Define ˆ θ n as:     n M n  1 1 ˆ    ; θ ∈ Θ � � θ n = argmin δ Y k τ n α , δ X γ,θ  d TV n M n k γ  k =1 k =1 Under previous assumptions we have a . s − lim n →∞ ,γ → 0 ˆ θ n = θ 0 . Remark: In fact we use a discretized or smoothed version of d TV Samy T. (Purdue) Drift estimation UTN 2015 17 / 25

  18. Numerical experiments Quadratic test function: n = M n = 1000 τ Step: T = γ = n α = 1 FOU with θ 0 = 1 k =1 ( Y kT ) 2 − ( X γ,θ � kT ) 2 � � � n � � � Smoothed TV distance: n = M n τ Step: T = γ = n α FOU with θ 0 = 1 L 1 distance for densities Samy T. (Purdue) Drift estimation UTN 2015 18 / 25

  19. Numerical experiments (2) Equation: dY t = − (1 + cos( θ Y t )) dt + dB t Parameters: θ 0 = 1 and H = 2 3 � �� n k =1 ( Y kT ) 2 − ( X γ,θ kT ) 2 � Figure: With Figure: TV type distance � Open questions: Convexity, gradient descent Samy T. (Purdue) Drift estimation UTN 2015 19 / 25

  20. Outline Introduction 1 Setting of the problem Estimation for systems driven by fBm: brief review Generalized least squares estimator 2 LAN property 3 Samy T. (Purdue) Drift estimation UTN 2015 20 / 25

  21. Setting � t j =1 σ j B j 0 b ( Y s ; θ ) ds + � d Equation: Y t = y 0 + t Observation: { Y t ; t ≥ 0 } with unknown θ Main assumption 1: � b ( x ; θ ) − b ( y ; θ ) , x − y � ≤ − α | x − y | 2 Ergodic behavior: Under Hypothesis (2), Unique invariant measure ν θ for L ( Y t ) Ergodic convergence towards stationary solution ¯ Y = ¯ Y ( θ ) Samy T. (Purdue) Drift estimation UTN 2015 21 / 25

  22. LAN property: definition Definition 3. LAN property for { P τ θ , θ ∈ Θ , τ > 0 } satisfied if there exists: ϕ τ ∈ R such that lim τ →∞ ϕ τ = 0 Γ( θ ) ∈ R q , q positive definite matrix such that for any u ∈ R q , as τ → ∞ : � d P τ � → u T N (0 , Γ( θ )) − 1 L ( P θ ) θ + ϕ τ u 2 u T Γ( θ ) u log − − − d P τ θ Interpretation: Statistical model behaves locally like a Gaussian i.i.d model Samy T. (Purdue) Drift estimation UTN 2015 22 / 25

  23. Cramer-Rao type bound Theorem 4. Suppose: LAN property is satisfied We have a family of estimators (ˆ θ τ ) τ ≥ 0 Then: 2   ˆ � � θ τ − θ � �  ≥ Tr (Γ( θ )) lim inf τ →∞ E θ � �  ϕ τ � � � � Samy T. (Purdue) Drift estimation UTN 2015 23 / 25

  24. LAN for fBm systems (with E. Nualart) Theorem 5. Consider: Our system with coercive hypothesis (2) Then as τ → ∞ we have: d P τ θ + u → u T N (0 , Γ( θ )) − 1 L ( P θ ) √ τ 2 u T Γ( θ ) u , log − − − d P τ θ where the quantity Γ( θ ) is defined by ( ¯ Y ergodic limit of Y ): � dr 1 dr 2 r − (1 / 2+ H ) r − (1 / 2+ H ) 1 2 R 2 + � σ − 1 (ˆ b ( ¯ Y 0 ; θ ) − ˆ b ( ¯ Y r 1 ; θ ))(ˆ b ( ¯ Y 0 ; θ ) − ˆ b ( ¯ Y r 2 ; θ )) T ( σ − 1 ) T � E θ Samy T. (Purdue) Drift estimation UTN 2015 24 / 25

  25. Perspective: rate of convergence A consequence of LAN: θ τ of order τ − 1 / 2 (does not depend on H ) Best convergence rate for ˆ Case of fractional Ornstein-Uhlenbeck: Rate τ − 1 / 2 achieved Other cases: No rate of convergence! Samy T. (Purdue) Drift estimation UTN 2015 25 / 25

Recommend


More recommend