Phenotypic deconstruction of dormant bud winter hardiness XII International Conference on Grapevine Breeding and Genetics Universitéde Bordeaux 7/15/2018-7/20/2018 Jason P. Londo and Alisson P. Kovaleski
Cold Hardiness: phenotyping 6-8 months of non-visual physiology Key Aspects: Cane, Trunk, Phloem, Xylem, Cambium, Compou mpound nd Bud 20 Endodormancy Ecodormancy Cold Hardiness: minimum temperatures do not breach bud’s 11 ° C 10 defenses. Buds track temperature. Chilling hour accumulation 0 Dormancy is critical: must be induced Temperature ° C to gain cold hardiness, maintained to -10 prevent damage. 0 ° C Timing is everything. -20 Full Chilling Insufficient Chilling -30 Maximum Hardiness -40 Nov-13 Dec-13 Jan-14 Feb-14 Mar-14 Apr-14
Phenotyping dormant bud cold hardiness 6.E-04 HTE 5.E-04 4.E-04 Low Voltage (V) Temperature Exotherm (LTE) 3.E-04 2.E-04 1.E-04 0.E+00 1.9 -2.1 -6.1 -10.2 -14.3 -18.4 -22.4 -26.5 -30.5 -34.6 Temperature ( ° C)
Tracking Bud Survival 2014-2015 2012-2013 2013-2014 12-Nov 12-Dec 11-Jan 10-Feb 12-Mar 7-Nov 7-Dec 6-Jan 5-Feb 7-Mar 6-Apr 12-Nov 12-Dec 11-Jan 10-Feb 12-Mar 11-Apr 15.00 15.00 15.00 5.00 5.00 5.00 -5.00 -5.00 -5.00 Degrees C ° -15.00 -15.00 -15.00 -25.00 -25.00 -25.00 -35.00 -35.00 -35.00 • The type of winter determines bud cold hardiness: strong environmental component V. riparia V. amurensis • Buds do not gain maximum hardiness unless the winter conditions are severe. V. vinifera • Phenotyping the entire winter is logistically challenging, we need to deconstruct the responses.
Acclimation: Gaining Cold Hardiness Starting LTE: ~ - 12 12 ° C 0 ° C Mean 7 ° C σ T – Changes in LTE based on LTE: ~ - 12 ° C 0 ° C oscillation 5 ° C mean and oscillation. Mean 7 ° C LTE: ~ - 12 ° C 3 ° C oscillation (4 to 10 ° C) Mean 7 ° C LTE: ~ - 17 17 ° C 5 ° C oscillation (2 to 12 ° C) Starting LTE: ~ - 12 12 ° C 3 ° C Mean 2 ° C LTE: ~ - 15 15 ° C 0 ° C oscillation 8 ° C 5 ° C Mean 2 ° C LTE: ~ - 20 20 ° C 5 ° C oscillation (-3 to 7 ° C) Londo and Kovaleski2017
Acclimation: σ T - Significantly different Gaining Cold Hardiness between species. Response σ T – Changes in LTE based on Strong mean and oscillation. V. amurensis V. riparia V. labrusca V. cinerea V. vinifera V. rupestris V. aestivalis Weak V. vulpina Londo and Kovaleski2017
Comparing cold hardiness response with statistics based models 43 different Vitis riparia No genotype effect Genotype effect 3-Oct 2-Nov 2-Dec 1-Jan 31-Jan 2-Mar 1-Apr 1-May 0 0 -5 -5 Measured LTE values ° C -10 -10 -15 LTE ° C -15 -20 -20 -25 σ T -25 -30 -30 Londo and Kovaleski 2018: in review -35 2013-2014 -35 4-Aug 3-Sep 3-Oct 2-Nov 2-Dec 1-Jan 31-Jan 2-Mar 1-Apr 1-May31-May All V. riparia respond to temperature fluctuations in the same way. Dormancy induction may modulate max LTE?
Deacclimation: Chilling and Losing Cold Hardiness Chilling accumulation increases rate of deacclimation Endodormancy Ecodormancy 10 ° C 22 ° C 0 0 −5 −5 −5 −10 −10 −10 30 LTE ( ° C) Chilling accumulates −15 ° ° −15 −15 20 −20 −20 −20 10 LTE ° C −25 360 360 −25 −25 0 860 860 1580 1580 −30 −30 −30 -10 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Time (day) Days -20 Days Kovaleski, Reisch and Londo 2018: in review -30 17-Sep 17-Oct 16-Nov 16-Dec 15-Jan 14-Feb 16-Mar 15-Apr 15-May
Deacclimation and Chilling Deacclimation rates at different chilling and temperatures Ψ deacc Full speed Rate of deacclimation 2.5 depends on the depends on the airplane temperature 100 k deacc ( ° C day - 1 ) 1580 (97 %) 1030 (60 %) Ecodormancy 2.0 0 860 (30 %) 360 ( 0 %) 4 Deacclimation potential 22 75 −5 T 1.5 (°C) −5 Rate (%) LTE ( ° C) −10 ° (°C) 50 1.0 2 −10 −15 4 ° 7 −5 Temperature 25 8 −20 0.5 −15 (°C) 10 2 11 −10 ~ −25 ° 22 −20 0.0 0 0 50 100 150 −15 Endodormancy Time (Day) 0 400 800 1200 1600 0 4 8 12 16 22 30 Chill Accumulation Temper ature (°C) Accumulated Chill −25 −20 Kovaleski, Reisch and Londo 2018: in review −25 ature (°C)
What does this have to do with phenotyping? Rate/Ratio 3 V. amurensis 22 ° C V. riparia 22 ° C Deacclimation potential is Slope: Dormancy 2.5 driven by chilling transition speed Deacclimationrate, ° C/day Riesling 22 ° C 2 Deacclimation rate is and temperature specific V. amurensis 10 ° C Inflection Point: 50% 1.5 Cab. Sauv. 22 ° C New high-throughput Deacclimating phenotypes for mapping potential populations 1 V. riparia 10 ° C Riesling 10 ° C 0.5 Cab. Sauv. 10 ° C 0 0 250 500 750 1000 1250 1500 Chill Accumulation
Deacclimation rate in 4 mapping families at 15 ° C Rate of loss ° C/day V. riparia family 0 0.57 V. riparia 15 ° C -5 0.51 V. amurensis 0.57 ° C/Day X LTE °C V. vinifera -10 0.30 V. cinerea -15 4 ° C 0.07 ° C/Day V. vulpina 0.29 -20 -25 2/5 2/10 2/15 2/20 2/25 0 V. vulpina family -5 0 -10 LTE ° C -5 15 ° C LTE °C -15 -10 0.29 ° C/Day -15 -20 4 ° C -20 0.04 ° C/Day T0 T4 T21 T11 -25 -25 Days in 15 ° C 2/5 2/10 2/15 2/20 2/25
Phenotypes in action: Integration of σ T and Σ deac predict cold hardiness 40 40 Outc tcome ome: Breaking the curve into 30 30 two portions identifies separate phenotypes: 20 20 1) Response potential: variation at species level = σ T 10 10 2) Dormancy/deacclimation 0 0 resistance: variation at genotype σ T level = Σ deac -10 -10 Σ deac Combining these two traits increases prediction ability and can -20 -20 be used to help map the traits. -30 -30 Aug-16 Aug-16 Oct-16 Oct-16 Nov-16 Nov-16 Jan-17 Jan-17 Mar-17 Mar-17 Apr-17 Apr-17 Jun-17 Jun-17
Phenotypes in action: Integration of σ T and Σ deac predict cold hardiness 40 Outc tcome ome: Breaking the curve into 30 two portions identifies separate phenotypes: 20 1) Response potential: variation at species level = σ T 10 2) Dormancy/deacclimation 0 resistance: variation at genotype σ T level = Σ deac -10 Σ deac Combining these two traits increases prediction ability and can -20 be used to help map the traits. -30 Aug-16 Oct-16 Nov-16 Jan-17 Mar-17 Apr-17 Jun-17
Summary • Understanding the complexity of the cold hardiness trait: • Temperature variation is a strong contributor to acclimation ability - species level trait. • Dormancy induction may determine max potential LTE - new phenotype goal. • Deacclimation rate and potential is key to predicting frost risk and budbreak – genotype level trait. • Development of high(er)-throughput phenotyping for cold hardiness • Ongoing development of a model for predicting behavior
Thank hank you ou fo for you our attention. ention. Qu Questio stions? ns? Kathlee een Deys Deys Hanna Martens Bill l Srmack ck John K Keeton Bob Martens Greg Noden Bruce Reisch Bill Wilse sey Tim Martinso son Lynn Johnson Ravine ines s Wine Cellar ars Anthony Road Wine Co. Anne Fennell – SDSU Researc rch Geneticist st PhD Candidat idate Krista ta Shelli i – USDA, Parma ma Jason Londo Alisso sson Koval aleski ski
Recommend
More recommend