disk formation with ambipolar diffusion from low to high
play

Disk Formation with Ambipolar Diffusion from Low- to High- Mass - PowerPoint PPT Presentation

Disk Formation with Ambipolar Diffusion from Low- to High- Mass Star Formation Benot Commeron Centre de Recherche Astrophysique de Lyon Ugo Lebreuilly, Matthias Gonzlez, Patrick Hennebelle, Gilles Chabrier, Pierre Marchand, Jacques Masson,


  1. Disk Formation with Ambipolar Diffusion from Low- to High- Mass Star Formation Benoît Commerçon Centre de Recherche Astrophysique de Lyon Ugo Lebreuilly, Matthias González, Patrick Hennebelle, Gilles Chabrier, Pierre Marchand, Jacques Masson, Neil Vaytet

  2. State-of-the-art in 2008: ideal MHD Hydro μ =20 μ =5 B=0 Weak B Strong B equatorial plane Magnetic field dominates NO DISK, NO FRAGMENTATION Magnetic braking catastrophe & Fragmentation Crisis (e.g., Hennebelle & Fromang 2008, Hennebelle & Teyssier 2008) yz - plane Commerçon et al. (2010) Commerçon Benoît TagKASI 2018

  3. Non-ideal MHD � Late formation � end of class 0, M env <<M env,0 (e.g., Machida & Hosokawa 2013 )  � ∂ B u ⇥ B � η Ω J � η H || B || J ⇥ B + η AD ∂ t � r ⇥ || B || 2 J ⇥ B ⇥ B = 0 � � Misalignment � no reason for the rotation axis and the magnetic field to be aligned (e.g., Hull et al. 2013 ) Non-ideal effects: � reduces magnetic braking efficiency (e.g. Hennebelle & Ciardi 2009, Joos et al. 2012, Li et al. 2013 ) - rearrangement of magnetic field lines � - reconnection � Turbulent diffusion - magnetic flux diffusion � reconnection events fast with Ohmic diffusion only, collective effect at larger - … needs gas-grain chemistry scale (e.g. Santos Lima et al. 2012, Joos et al. 2013, Seifried et al. 2013 ) � � Non-ideal MHD � Ohm dissipation ( Tomida et al. 2013, 2015, Machida et al. ) � Hall effect ( Krasnopolsky et al. 2011, Tsukamoto et al. 2015, 2017, Wurster et al. 2016, Marchand et al. 2018 ) � ambipolar diffusion ( Tsukamoto et al. 2015, Masson et al. 2016 ) � Commerçon Benoît TagKASI 2018 �

  4. Equilibrium chemistry for non-ideal MHD ✓ Reduced chemical network dedicated to ionisation (based on the work by Umebayashi & Nakano 1990 ) • H, He, C, O, metallic elements (Fe, Na, Mg, etc..) • H + , H 3+ , He + , C + , molecular and metallic ions • bins in the dust grains size distribution (G, G + , G - ) • dust evaporation at T>800 K • thermal ionisation of potassium (T>1000 K) • neutral elements have constant abundances � � ✓ UMIST database for gas species � ( McElroy et al. 2013 ) � ✓ Kunz & Mouschovias (2009) for � interactions with and between grains � � ✓ Goal: compute a 3D table of abundances • depends on temperature, density and CR ionisation • used on-the-fly in 3D calculations to compute resistivities Marchand et al. (2016) Commerçon Benoît TagKASI 2018

  5. Equilibrium chemistry for non-ideal MHD: results https://bitbucket.org/pmarchan/chemistry Marchand et al. (2016) Commerçon Benoît TagKASI 2018

  6. Equilibrium chemistry for non-ideal MHD: results https://bitbucket.org/pmarchan/chemistry Marchand et al. (2016) Commerçon Benoît TagKASI 2018

  7. Equilibrium chemistry for non-ideal MHD: results https://bitbucket.org/pmarchan/chemistry 1/ Grain evaporation is the most important effect 2/ Needs at least 5 bins in dust grain size distribution to converge… Marchand et al. (2016) Commerçon Benoît TagKASI 2018

  8. Radiation-magneto-hydrodynamics in RAMSES ✓ Adaptive-mesh-refinement code RAMSES ( Teyssier 2002 ) ✓ Non-ideal MHD solver using Constrained Transport ( Teyssier et al. 2006, Fromang et al. 2006, Masson et al. 2012,2016, Marchand et al. 2018 ). In this work, just ambipolar diffusion with resistivity from equilibrium gas-grain chemistry ( Marchand et al. 2016 ) ✓ Multifrequency Radiation-HD solver using the Flux Limited Diffusion approximation ( Commerçon et al. 2011b, 2014, González et al. 2015). In this work, just grey ✓ Sink particles using clump finder algorithm (Bleuler & Teyssier 2014) + r · [ ρ u ] = 0 ∂ t ρ + r · [ ρ u ⌦ u + P I ] = � ρ r Φ � λ r E r + ( r ⇥ B ) ⇥ B ∂ t ρ u ⇣ ⌘ c λ ∂ t E T + r · [ u ( E T + P T ) � B ( B · u ) � E AD ⇥ B ] = � ρ u · r Φ � P r r : u � λ u r E r + r · ρκ R r E r ⇣ ⌘ + κ P ρ c ( a R T 4 � E r ) c λ + r · [ u E r ] = � P r r : u + r · ∂ t E r ρκ R r E r r ⇥ ( u ⇥ B ) � r ⇥ E AD = 0 ∂ t B � 1 Ambipolar EMF E AD = γ AD ρ i ρ [( r ⇥ B ) ⇥ B ] ⇥ B Commerçon Benoît TagKASI 2018

  9. 1 M ⊙ : Misalignment & ambipolar diffusion • formation of a plateau at B~0.1G • reorganisation of magnetic field lines (essentially poloidal ) => reduced magnetic braking • mass and radius of first core do not change • weaker outflows compared to ideal MHD � Masson et al. 2016 Commerçon Benoît TagKASI 2018

  10. 1 M ⊙ : Misalignment & ambipolar diffusion • formation of a plateau at B~0.1G • reorganisation of magnetic field lines (essentially poloidal ) => reduced magnetic braking • mass and radius of first core do not change • weaker outflows compared to ideal MHD � 𝜄 =40 ∘ • Rotationally supported disk formation ( R ~ 50 AU ) - consistent with obs. • P therm /P mag >1 within disks • vertical magnetic field => initial conditions for protoplanetary disks studies 𝜄 =0 Masson et al. 2016 Commerçon Benoît TagKASI 2018

  11. 1 M ⊙ : Turbulence and ambipolar diffusion •magnetisation & disk size does not depend on turbulence level, nor on the initial magnetic field μ =5 μ =2 amplitude Commerçon et al. in prep. Commerçon Benoît TagKASI 2018

  12. 1 M ⊙ : Turbulence and ambipolar diffusion •disk evolution does not depend on turbulence level 𝜄 =40 ∘ Subsonic Supersonic μ =5 μ =2 Convergence! Commerçon et al. in prep. Commerçon Benoît TagKASI 2018

  13. 100 M ⊙ : Massive dense core collapse (aligned) HYDRO AD mu=2 ✓ “Small” disk: R~300 AU ✓ Large disk: R~1000 AU ✓ No fragmentation ✓ Binary system: 24 and 13 M ⨀ ✓ Magnetic outflow ✓ Radiative outflow/bubble (1500 AU) Gonzalez et al. in prep. Commerçon Benoît TagKASI 2018

  14. 100 M ⊙ : Disks properties AMBI μ =2 AMBI μ =5 P therm >P mag HYDRO P therm <P mag ✓ disks are dominated by thermal pressure with AD (i.e. hydro disks) ✓ thick and magnetised disk with iMHD IMHD μ =2 Commerçon Benoît TagKASI 2018

  15. 100 M ⊙ : Magnetisation AMBI μ =2 AMBI μ =5 IMHD μ =2 ✓ B max reduced by > 1 order of magnitude by AD ✓ plateau @ B<1G ✓ similar to results found in low mass star Masson et al 2016 Commerçon Benoît TagKASI 2018

  16. Magnetically regulated disk size with AD • very good agreement between the analytical and experimental values • disk size does not depend on turbulence level • weak dependance on the mass � Low-mass core - 1M ⊙ Massive core - 100 M ⊙ Hennebelle et al. (2016) Commerçon Benoît TagKASI 2018

  17. Gas-dust dynamical coupling Drag force � Dust velocity � Gas velocity Stopping time (Epstein 1924) � � PhD work of Ugo Lebreuilly Coupling with the gas (Stokes number) @ CRAL Lyon If St<1, strong coupling If St>1, poor coupling Commerçon Benoît TagKASI 2018

  18. Gas and dust mixture as a monofluid Multiple small dust species monofluid (Laibe and Price 2014c, Price & Laibe 2015) Approximation for small grains : St <1 Total density Dust ratio of species k Barycentre velocity Total energy of the mixture Lebreuilly, Commerçon & Laibe, submitted to A&A Commerçon Benoît TagKASI 2018

  19. Collapse with dust and gas dynamical coupling Dust 1 nm Dust 0.1 mm Dust 1 nm Dust 0.1 mm 1000 AU Dust 0.5 mm Gas Dust 0.5 mm Gas Edge-on cut Mid-plane cut Lebreuilly et al., in prep. Commerçon Benoît TagKASI 2018

Recommend


More recommend