ambipolar diffusion effects on the weakly ionized
play

Ambipolar Diffusion Effects on the Weakly Ionized Turbulence - PowerPoint PPT Presentation

Ambipolar Diffusion Effects on the Weakly Ionized Turbulence Molecular Clouds UC-HIPACC: The Future of AstroComputing Conference San Diego Supercomputer Center December 16 - 17, 2010 Pak Shing Li Astronomy Department, UC Berkeley


  1. Ambipolar Diffusion Effects on the Weakly Ionized Turbulence Molecular Clouds UC-HIPACC: The Future of AstroComputing Conference San Diego Supercomputer Center December 16 - 17, 2010 Pak Shing Li Astronomy Department, UC Berkeley Collaborators: Chris McKee (UC Berkeley) Richard Klein (LLNL, UC Berkeley) Robert Fisher (Univ. of Massachusetts at Dartmouth )

  2. Molecular Clouds Magnetic field in MCs • ≤ 21 μ G in MCs, magnetically supercritical (M/M c =1.4~2.1) Troland & Crutcher (2008) • ~ 6 μ G in CNM, magnetically subcritical Heiles & Troland (2005 ) • Approximate equipartition: 1.3 < E turb /E mag < 1.9 Carina Nebula Goldsmith et al. (2008) Weintraub et al. (2000) Supersonic turbulent MCs • Broad molecular line widths in MCs: 1 ~ 10 km/s Zuckerman & Palmer (1974) Line width - size relation: v  l 0.5  P( k )  k -2 Larson (1981), Passot et al. (1988) • • Hierarchical filamentary and clump structures Low et al. (1984), Scalo (1984), Stenholm (1984), Elmegreen & Scalo (2004) MHD turbulenc e

  3. Ideal or Non-Ideal? Ideal MHD: ionized gas frozen with magnetic field Weakly Ionized MCs (ions + neutrals): n    7 i x 10 Caselli (1998), Bergin et al. (1999) i n n • ions are frozen with B-field eB        ( μG) rads 3 1 -1 9.58 10 Z B ci m c i 1      6 t 10 s t 1  in in ci n • neutrals depend on coupling: Ambipolar Diffusion Mestel & Spitzer (1956) Slow AD-driven Quasi-Static Star Formation Process: t AD ~ 10 t ff Spitzer (1968), Nakano & Tademaru (1972), Mouschovias (1976, 1977, 1979), Nakano & Nakamura (1978), Shu (1983), Lizano & Shu (1989), Fiedler & Mouschovias (1992,1993), …

  4. Numerical Method (ZEUS-MP + AD) 2-Fluid Semi-Implicit Method: Tóth (1995), Mac Low & Smith (1997)               n i v ; v ;   n n i i t t  v                  n v v P v v g ;  n n n n n AD i n n i n t  v 1                       i v v P v v g B B ;   i i i i i AD i n i n i t 4  B         Isothermal v B ; B 0  i t          3 i t x v / 10  Ai i n Heavy-Ion Approximation: Li, McKee, Klein (2006) γ AD ρ i = const. χ i ≡ ρ i / ρ n Li et al. (2008) • Criterion: f I « f D  f L => R AD ( l vi ) » M Ai 2 •    AD Reynolds number 4 v t ≤ 1 weak coupling    AD i n AD R ( ) AD 2 t B » 1 strong coupling AD dyn

  5. Models Parameters 128 3 , 256 3 , and one 512 3 Li, McKee, Klein, & Fisher (2008): • Model parameters: M rms = 3, β = 0.1, k = 1~2, T = 10K, periodic boundaries • Convergence studies in time, resolution, and ionization mass faction χ i • Convergence studies in power spectral indexes 1.02 1.015 <U B > / U B,0 U B / U B,0  i = 0.01 1.01 1.01 speedup = 100 1.005 R AD ( l vi ) » M Ai 2 1 1 0 0.5 1 1.5 2 -1 -2 -3 -4 t f log 10  i Five 512 3 , no gravity, 600,000 CPU hours R AD ( l 0 ) : 0.12, 1.2, 12, 120, 1200

  6. Velocity Power Spectral Index ← Pure HD Ideal MHD → 2.5 n v,i III II n v,n n B Burgers Spectrum 2 I McKee, Li, & Klein (2010) n I: ideal MHD R AD   1.5 II: standard AD Iroshnikov-Kraichnan Spectrum R AD › M A 2 III: strong AD 2 › R AD › M Ai M A 2 1 -1 0 1 2 3 10 10 10 10 10 R AD (l 0 )

  7. R AD of 27 Observed Molecular Clouds 6 6 5 5 4 4 N N 3 3 2 2 1 1 0 0 0 1 2 0 1 2 10 10 10 10 10 10 R AD (D MC ) R AD (D MC ) Crutcher (1999) McKee, Li, & Klein (2010)

  8. Velocity Power Spectral Index ← Pure HD Ideal MHD → 2.5 n v,i III II n v,n n B Burgers Spectrum 2 I McKee, Li, & Klein (2010) n I: ideal MHD R AD   1.5 II: standard AD Iroshnikov-Kraichnan Spectrum R AD › M A 2 III: strong AD 2 › R AD › M Ai M A 2 1 -1 0 1 2 3 10 10 10 10 10 R AD (l 0 ) Crutcher (1999)

  9. Clump Mass function and Mass/Flux Ratio Turbulence Fragmentation: Padoan & Nordlund (2002), Padoan et al. (2007) Hennebelle & Chabrier (2008, 2009)     4lnm+ σ 2 -x     N(m)dm=C 1+erf m dm 2 2 σ     -n P (k)=k v McKee, Li, & Klein (2010)

  10. Morphological Change of Turbulence Gas with AD I II III ↑B R AD (l 0 ) = 1200 R AD (l 0 ) = 12 R AD (l 0 ) = 0.12 Z Z Z X X X 1 2 3 4 5 6 7 2 4 6 8 10 12 2 4 6 8 10 12

  11. Conclusions • 2-fluid semi-implicit + heavy-ion approximation is fast and works well on turbulence simulations! AD Reynolds Number R AD ( l vi ) » M Ai 2 Li, McKee, & Klein (2006), Li et al. (2008) • Many statistical properties (e.g. velocity and density power spectra, density PDF) of the magnetized turbulence system change as a function of R AD , which is a good parameter on measuring how important AD is. Li et al. (2008) • AD is still important in weakly ionized MCs at small length scale and that leads to important astrophysical implication on many aspects of the MCs (e.g. morphological change, clump mass function, mass/flux ratio, ions & neutrals line width ratio, correction of Chandrasekhar-Fermi method, turbulence enhancement to AD diffusion, AD heating, …) when AD is strong. McKee, Li, & Klein (2010), Li, McKee, & Klein (2011)

Recommend


More recommend