TeV Scale LNV: 0 νβ νββ -Decay & Colliders I M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ Collaborators: Tao Peng, Peter Winslow; V. Cirigliano, M. Graesser, M. Horoi, P. Vogel ACFI Neutrino Workshop July 2017 � 1
This talk: beyond the “poster child” 2
This talk: beyond the “poster child” 3
Themes for This Talk 4
Low-Energy / High-Energy Interplay Discovery “Diagnostic” Low energy High energy 5
Low-Energy / High-Energy Interplay Discovery “Diagnostic” Low energy High energy 6
Low-Energy / High-Energy Interplay Discovery “Diagnostic” Low energy High energy 7
Low-Energy / High-Energy Interplay Discovery “Diagnostic” ? Low energy High energy 8
νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana e − e − LNV Physics ( ) ( ) A Z , N A Z − 2, N + 2 9 36
νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Impact of observation e − e − • Total lepton number not conserved at classical level • New mass scale in nature, Λ LNV Physics • Key ingredient for standard baryogenesis via leptogenesis ( ) ( ) A Z , N A Z − 2, N + 2 10 36
Ton Scale Experiments 11 J. Wilkerson INT DBD Program June 2017
νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Impact of observation e − e − What’s • Total lepton number not inside ? conserved at classical level • New mass scale in nature, Λ LNV Physics • Key ingredient for standard baryogenesis via leptogenesis ( ) ( ) A Z , N A Z − 2, N + 2 12 12
LNV: Discoverable at the Energy Frontier LHC International Linear Collider ATLAS CMS Future Circular e + e - & pp Future Circular e + e - & pp Thanks: S. Gascon- Shotkin 13
Outline I. The “Standard Mechanism”: High Scale LNV II. TeV Scale LNV III. Simplified Models: Connecting DBD & Colliders IV. Summary V. Sub Weak Scale LNV (back up) 14
I. “St’d Mechanism”: High Scale LNV 15
LNV Mass Scale & 0 νβ νββ -Decay Underlying A(Z,N) ! ! A(Z+2, N-2) + e - e - Physics • 3 light neutrinos only: source of neutrino mass at the very high see-saw scale • 3 light neutrinos with TeV scale source of neutrino mass • > 3 light neutrinos 16
LNV Mass Scale & 0 νβ νββ -Decay Underlying A(Z,N) ! ! A(Z+2, N-2) + e - e - Physics • 3 light neutrinos only: source of neutrino mass at the very high see-saw scale • 3 light neutrinos with TeV scale source of neutrino mass • > 3 light neutrinos 17
νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana “Standard” Mechanism e − e − • Light Majorana mass generated ν M at the conventional see-saw scale: Λ ~ 10 12 – 10 15 GeV W − W − • 3 light Majorana neutrinos mediate decay process ( ) ( ) A Z , N A Z − 2, N + 2 18 18
High Scale LNV Three active light neutrinos Effective DBD neutrino mass (eV) Current generation Current generation Ton Scale Inverted Normal Lightest neutrino mass (eV ) ! 19
Details See F. Deppisch talk…. 20
II. TeV Scale LNV 21
LNV Mass Scale & 0 νβ νββ -Decay Underlying A(Z,N) ! ! A(Z+2, N-2) + e - e - Physics • 3 light neutrinos only: source of neutrino mass at the very high see-saw scale • 3 light neutrinos with TeV scale source of neutrino mass • > 3 light neutrinos Two parameters: Effective coupling & effective heavy particle mass 22
νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV LNV Mechanism e − e − • Majorana mass generated at the TeV scale F • Low-scale see-saw • Radiative m ν S S • m MIN << 0.01 eV but 0 νββ -signal accessible with tonne-scale exp’ts due to heavy Majorana ( ) ( ) A Z , N A Z − 2, N + 2 particle exchange 23 23
TeV LNV & Leptogenesis 10 12 Standard thermal lepto Energy Scale (GeV) Deppisch et Fast Δ L = 2 int: erase L 10 3 al ‘14, ‘15 10 2 10 -1 24
TeV LNV & Leptogenesis 10 12 Standard thermal lepto Energy Scale (GeV) Deppisch et Fast Δ L = 2 int: erase L 10 3 al ‘14, ‘15 Electroweak, resonant lepto, 10 2 WIMPY baryo, ARS lepto… 10 -1 Post-sphaleron, cold… Baryogenesis alternatives 25
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 26
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 SUSY: R Parity-Violation d d e e ~ ~ Sfermion q , l ~ ~ ~ F V F ~ Gaugino g , χ Majorana u u 27
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 LRSM: Low-scale See-Saw e e Mass: standard see-saw but TeV W R N R W R scale + many other diagrams 28
νββ -Decay: TeV Scale LNV 0 νβ LHC: SS Dilepton + Dijet L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana LHC Production & 0 νββ -Decay 76 Ge τ (0 ν ) LHC exclusion Helo et al, PRD 88.011901, 88.073011 29
III. Simplified Models MRM LNV Dog Race 30
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Can it be discovered e − 0 νββ - decay with combination of e − νββ & LHC searches ? 0 νβ d u d u Simplified models S + e − LHC: pp ! jj e - e - F 0 e − S + 31 d u
Simplified Models: Illustrative Case • General considerations for collider - 0 νβ νββ decay interface 32
Simplified Models: Illustrative Case S: (1, 2, ½ ) F: (1, 0, 0) Majorana 33
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Helo et al claim: g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Fig. 11 S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 34 ;
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Helo et al claim: EXO exclusion g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Future Xe: T 1/2 > 10 27 yr Fig. 11 S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 35 ;
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Helo et al claim: EXO exclusion LHC: pp ! jj e - e - g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Future Xe: T 1/2 > 10 27 yr 300 fb -1 : < 3 events Fig. 11 S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 36 ;
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Comparing 0 νββ & LHC e − sensitivities (our work): 0 νββ - decay e − • LHC backgrounds d u • Running effective op’s to low energy d u S + • Matching onto hadronic d.o.f. e − • Long range NME LHC: pp ! jj e - e - F 0 contributions e − S + 37 d u
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: • Charge flip • Jet faking electron 38
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: g e + e - Z • Charge flip e + • Jet faking electron e - g e + transfers most of p T to conversion e - ; Z / γ * + jets ! apparent e - e - jj event 39
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: Bin in η and apply charge flip prob 40
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: Jet fakes (e.g., π + looks like e + ) 41
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Cuts Backgrounds: • H T • MET • M ll 42 41
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Cuts Backgrounds: 43 T. Peng, MRM, P. Winslow 1508.04444
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Low energy: Matching d u d u Match onto O eff at Λ BSM S + e − e − F 0 e − e − S + d u d u 0 νββ -decay as fu g g e ff = C 1 ( Λ ) 1 / 4 . We use a prospec 44
νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Low energy: Running 45
Recommend
More recommend