neutrino physic ics neutrino physic ics from colliders
play

NEUTRINO PHYSIC ICS NEUTRINO PHYSIC ICS FROM COLLIDERS FROM - PowerPoint PPT Presentation

NEUTRINO PHYSIC ICS NEUTRINO PHYSIC ICS FROM COLLIDERS FROM COLLIDERS e Renata Zukanovich Funchal Instituto de Fsica Universidade de So Paulo March 29, 2006 Rio de Janeiro, Brazil OUTLINE OUTLINE Neutrinos in the


  1. NEUTRINO PHYSIC ICS NEUTRINO PHYSIC ICS FROM COLLIDERS FROM COLLIDERS ν e ν µ ν τ Renata Zukanovich Funchal Instituto de Física – Universidade de São Paulo March 29, 2006 Rio de Janeiro, Brazil

  2. OUTLINE OUTLINE Neutrinos in the Standard Model Neutrinos Beyond the Standard Model Neutrino Oscillations Experimental Evidence Connection with Collider Physics

  3. NEUTRINOS IN THE NEUTRINOS IN THE STANDARD MODEL STANDARD MODEL 3 active neutrinos, singlets of SU(3) c   U(1) em SU(2) L doublet CC interaction NC interaction

  4. Number of Neutrinos from LEP Γ inv = Γ z - Γ had - 3 Γ lep Γ inv / Γ lep = 2 σ had ) ½ - R lep - 3 (12 π R lep /M Z R lep = Γ had / Γ lep Z 0 partial width to invisible final state @LEP (90's) → 3 active ν ' s N ν = 3.00 ± 0.07 (direct meas.) N ν = 2.994 ± 0.012 ( SM fit)

  5. NEUTRINOS IN THE NEUTRINOS IN THE STANDARD MODEL STANDARD MODEL fermion masses arise from G SM → SU(3) c  U(1) em loop corrections accidental symmetry Neutrinos are massless in the SM !

  6. NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL Q = 0 Dirac Neutrinos Majorana Neutrinos

  7. NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL Dirac Fermion : needs independent left and right chiral projections Majorana Fermion : needs only one independent chiral projection

  8. NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL Most General Neutrino Mass Term

  9. NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL 1) SM effective low energy theory (have to consider nonrenormalizable terms) spontaneous symmetry breaking (Z ij /M BSM ) φ φ L Li L Lj (M) ij = Z ij v 2 /(2 M BMS ) the source of this term is some new heavy field (tree level or loop) extensions of SM generally imply neutrino mass understand origin and smallness of neutrino mass term violates L (total and flavor) → lepton mixing

  10. NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL 2) adding new fields ν s1 , ν s2 , ν s3 , ν s4 , ν s5 ,..., ν sm m sterile neutrinos two types of mass term arise from renormalizable terms = complex & symmetric diagonilized by U matrix (3+m)

  11. NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL 2) adding new fields Dirac Mass Term Transform as SU(2) L doublet: generated after spontaneous symmetry breaking from a Yukawa term Conserves total L (but not flavor L) Majorana Mass Term Singlet of G SM : can appear as a bare mass term Breaks L (by 2 units)

  12. NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL M N >> > 〈φ〉 : see-saw mechanism [ Ramond (79); Gell-Mann et al. (79); Ya Yanagida (79)] m 1 ≈ M N m 2 ≈ m D 2 /M N

  13. NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL mass eigenstates interaction eigenstates V l (3x3) unitary V ν (nxn) unitary

  14. NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL mass eigenstates interaction eigenstates U mixing matrix

  15. NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS [Ponteco corvo (57), Maki, Nakagawa, Sakata (62)] observed eigenstate: after travel distance L (L≈ t): neutrinos with mass m j , energy E j can be described as

  16. NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS [Ponteco corvo (57), Maki, Nakagawa, Sakata (62)] p i ≈ p ≡ ≃ ≈E p ≃ j CP-violating term : neutrino (-), antineutrino(+)

  17. NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS [Ponteco corvo (57), Maki, Nakagawa, Sakata (62)] p i ≈ p ≡ ≃ ≈E p ≃ j

  18. NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS ν 1 ν 2 ν 3 ν e ν µ U MNS = ν τ mixing matrix θ 12 = θ sol θ 23 = θ atm ~ π /4 θ 13 ~ 0 ∆ m 2 ij = m 2 i - m 2 CP violating fase δ =? j ∆ m 2 31 = ∆m 2 32 + ∆m 2 21

  19. NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS 〈 P αβ 〉 = ∫ dE ν φ(Ε ν ) σ(Ε ν )ε(Ε ν ) P αβ (Ε ν ) −−−−−−−−−−−−−−−−−−−−−− ∫ dE ν φ(Ε ν ) σ(Ε ν ) ε(Ε ν )

  20. NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS If you see an oscillation signal ➲ with P osc = P ± δ P then carve out an allowed region in ( ∆ m 2 ,sin 2 2 θ ) plane. P=sin 2 2 θ sin 2 (1.27 ∆ m 2 L/E) If you see no signal and limit ➲ oscillation with P osc < P @ 90% CL then carve out an excluded region in the ( ∆ m 2 ,sin 2 2 θ ) plane.

  21. EXPERIMENTAL EVIDENCE EXPERIMENTAL EVIDENCE

  22. ATMOSPHERIC NEUTRINO ATMOSPHERIC NEUTRINO ν µ disappearance observed ! ➲ Flux dependence on azimuth is directly related to distance traveled ● Perfect laboratory to search for oscillations

  23. Oscillation Survival Probability for ν µ →ν τ ∆ m 2 = 5 ×10 −3 eV 2 sin 2 2θ = 1.0 P=1- sin 2 2 θ sin 2 (1.27 ∆ m 2 L/E)

  24. ν µ → ν τ ATMOSPHERIC NEUTRINO ATMOSPHERIC NEUTRINO Super-Kamiokande (1998)

  25. ATMOSPHERIC NEUTRINO ATMOSPHERIC NEUTRINO ν µ → ν τ Super-Kamiokande 2004 ∆ m 2 = 2.5 x 10 -3 eV 2 32 sin 2 2 θ 23 = 1. K2K confirms !

  26. CHOOZ (1999) CHOOZ (1999) P osc < 0.05 Experiment with reactor neutrinos sin 2 2 θ 13 < 0.15 sin 2 θ 13 < 0.04 in France

  27. SOLAR NEUTRINOS SOLAR NEUTRINOS

  28. Sudbury Neutrino Sudbury Neutrino Observatory (SNO) Observatory (SNO) 1 kton D 2 O - Sudbury, Canad á

  29. Neutrinos arrive as different flavors

  30. _ _ ν e + p → n + e +

  31. SOLAR + KamLAND SOLAR + KamLAND ∆ m 2 21 = 7,9 x 10 -5 eV 2 sin 2 θ 12 = ≈ 0,29

  32. CURRENT STATUS CURRENT STATUS 7.3 x 10 -5 eV 2 ≤ ∆ m 2 21 ≤ 9 x 10 -5 eV 2 Dominated by KamLAND 1.5 x 10 -3 eV 2 ≤ | ∆ m 2 32 | ≤ 3.4 x 10 -3 eV 2 Dominated by Atmospheric SK sin θ 13 < 0.20 (CHOOZ) 0.50 < sin θ 12 < 0.61 (SNO) 0.6 < sin θ 23 < 0.8 (ATM) @ 90 % CL

  33. CONNECTION WITH COLLIDER CONNECTION WITH COLLIDER PHYSICS PHYSICS ➲ production of heavy Neutrinos (N) pp ⇒ l + l '+ N l,l' =e, µ,τ @LHC [A. A . Ali, A A.V.B .Boriso sov, , N.B .B. . Zamorin (2001)] )] e+e- ⇒ N ν ⇒ l W ν @CLIC [F. d del Aguila, , J.A. A Aguilar-Saavedra (2005)] )] ➲ Bilinear R-parity violating scenarios (AMSB,SUGRA) @Tevatron and LHC [Va Valle e et al., ., d de C Campos et al.] .]

  34. Production of Heavy N Production of Heavy N pp ⇒ l + l '+ N l=e, µ,τ @LHC [A. A . Ali, A A.V.B .Boriso sov, , N.B .B. . Zamorin (2001)] )] σ (pp ⇒ l + l '+ N) = 0.8 (1-½ δ ll' ) |U lN U l'N | 2 F(√s,m N ) fb √s = 14 TeV

  35. Production of Heavy N Production of Heavy N

  36. Production of Heavy N Production of Heavy N e+e- ⇒ N ν ⇒ l W ν @CLIC [F. d del Aguila, , J.A. A Aguilar-Saavedra (2005)] )] √s = 3 TeV can detect heavy Majorana/Dirac N with m N = 1-2 TeV

  37. Production of Heavy N Production of Heavy N

  38. Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models

  39. Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models

  40. Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models Electroweak symmetry breaking: the two Higgs doublets H d and H u and the sneutrino acquire a vev. The symmetry is radiatively broken in AMSB and SUGRA

  41. Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models

  42. Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models Dependence on AMSB parameters

  43. Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models Dependence on AMSB parameters

  44. Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models Dependence on parameters ε 's and Λ 's

  45. Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models for fixed BrpV parameters Allow region in m 0 x m 1/2

  46. Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models

Recommend


More recommend