NEUTRINO PHYSIC ICS NEUTRINO PHYSIC ICS FROM COLLIDERS FROM COLLIDERS ν e ν µ ν τ Renata Zukanovich Funchal Instituto de Física – Universidade de São Paulo March 29, 2006 Rio de Janeiro, Brazil
OUTLINE OUTLINE Neutrinos in the Standard Model Neutrinos Beyond the Standard Model Neutrino Oscillations Experimental Evidence Connection with Collider Physics
NEUTRINOS IN THE NEUTRINOS IN THE STANDARD MODEL STANDARD MODEL 3 active neutrinos, singlets of SU(3) c U(1) em SU(2) L doublet CC interaction NC interaction
Number of Neutrinos from LEP Γ inv = Γ z - Γ had - 3 Γ lep Γ inv / Γ lep = 2 σ had ) ½ - R lep - 3 (12 π R lep /M Z R lep = Γ had / Γ lep Z 0 partial width to invisible final state @LEP (90's) → 3 active ν ' s N ν = 3.00 ± 0.07 (direct meas.) N ν = 2.994 ± 0.012 ( SM fit)
NEUTRINOS IN THE NEUTRINOS IN THE STANDARD MODEL STANDARD MODEL fermion masses arise from G SM → SU(3) c U(1) em loop corrections accidental symmetry Neutrinos are massless in the SM !
NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL Q = 0 Dirac Neutrinos Majorana Neutrinos
NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL Dirac Fermion : needs independent left and right chiral projections Majorana Fermion : needs only one independent chiral projection
NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL Most General Neutrino Mass Term
NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL 1) SM effective low energy theory (have to consider nonrenormalizable terms) spontaneous symmetry breaking (Z ij /M BSM ) φ φ L Li L Lj (M) ij = Z ij v 2 /(2 M BMS ) the source of this term is some new heavy field (tree level or loop) extensions of SM generally imply neutrino mass understand origin and smallness of neutrino mass term violates L (total and flavor) → lepton mixing
NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL 2) adding new fields ν s1 , ν s2 , ν s3 , ν s4 , ν s5 ,..., ν sm m sterile neutrinos two types of mass term arise from renormalizable terms = complex & symmetric diagonilized by U matrix (3+m)
NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL 2) adding new fields Dirac Mass Term Transform as SU(2) L doublet: generated after spontaneous symmetry breaking from a Yukawa term Conserves total L (but not flavor L) Majorana Mass Term Singlet of G SM : can appear as a bare mass term Breaks L (by 2 units)
NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL M N >> > 〈φ〉 : see-saw mechanism [ Ramond (79); Gell-Mann et al. (79); Ya Yanagida (79)] m 1 ≈ M N m 2 ≈ m D 2 /M N
NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL mass eigenstates interaction eigenstates V l (3x3) unitary V ν (nxn) unitary
NEUTRINOS BEYOND THE NEUTRINOS BEYOND THE STANDARD MODEL STANDARD MODEL mass eigenstates interaction eigenstates U mixing matrix
NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS [Ponteco corvo (57), Maki, Nakagawa, Sakata (62)] observed eigenstate: after travel distance L (L≈ t): neutrinos with mass m j , energy E j can be described as
NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS [Ponteco corvo (57), Maki, Nakagawa, Sakata (62)] p i ≈ p ≡ ≃ ≈E p ≃ j CP-violating term : neutrino (-), antineutrino(+)
NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS [Ponteco corvo (57), Maki, Nakagawa, Sakata (62)] p i ≈ p ≡ ≃ ≈E p ≃ j
NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS ν 1 ν 2 ν 3 ν e ν µ U MNS = ν τ mixing matrix θ 12 = θ sol θ 23 = θ atm ~ π /4 θ 13 ~ 0 ∆ m 2 ij = m 2 i - m 2 CP violating fase δ =? j ∆ m 2 31 = ∆m 2 32 + ∆m 2 21
NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS 〈 P αβ 〉 = ∫ dE ν φ(Ε ν ) σ(Ε ν )ε(Ε ν ) P αβ (Ε ν ) −−−−−−−−−−−−−−−−−−−−−− ∫ dE ν φ(Ε ν ) σ(Ε ν ) ε(Ε ν )
NEUTRINO OSCILLATIONS NEUTRINO OSCILLATIONS If you see an oscillation signal ➲ with P osc = P ± δ P then carve out an allowed region in ( ∆ m 2 ,sin 2 2 θ ) plane. P=sin 2 2 θ sin 2 (1.27 ∆ m 2 L/E) If you see no signal and limit ➲ oscillation with P osc < P @ 90% CL then carve out an excluded region in the ( ∆ m 2 ,sin 2 2 θ ) plane.
EXPERIMENTAL EVIDENCE EXPERIMENTAL EVIDENCE
ATMOSPHERIC NEUTRINO ATMOSPHERIC NEUTRINO ν µ disappearance observed ! ➲ Flux dependence on azimuth is directly related to distance traveled ● Perfect laboratory to search for oscillations
Oscillation Survival Probability for ν µ →ν τ ∆ m 2 = 5 ×10 −3 eV 2 sin 2 2θ = 1.0 P=1- sin 2 2 θ sin 2 (1.27 ∆ m 2 L/E)
ν µ → ν τ ATMOSPHERIC NEUTRINO ATMOSPHERIC NEUTRINO Super-Kamiokande (1998)
ATMOSPHERIC NEUTRINO ATMOSPHERIC NEUTRINO ν µ → ν τ Super-Kamiokande 2004 ∆ m 2 = 2.5 x 10 -3 eV 2 32 sin 2 2 θ 23 = 1. K2K confirms !
CHOOZ (1999) CHOOZ (1999) P osc < 0.05 Experiment with reactor neutrinos sin 2 2 θ 13 < 0.15 sin 2 θ 13 < 0.04 in France
SOLAR NEUTRINOS SOLAR NEUTRINOS
Sudbury Neutrino Sudbury Neutrino Observatory (SNO) Observatory (SNO) 1 kton D 2 O - Sudbury, Canad á
Neutrinos arrive as different flavors
_ _ ν e + p → n + e +
SOLAR + KamLAND SOLAR + KamLAND ∆ m 2 21 = 7,9 x 10 -5 eV 2 sin 2 θ 12 = ≈ 0,29
CURRENT STATUS CURRENT STATUS 7.3 x 10 -5 eV 2 ≤ ∆ m 2 21 ≤ 9 x 10 -5 eV 2 Dominated by KamLAND 1.5 x 10 -3 eV 2 ≤ | ∆ m 2 32 | ≤ 3.4 x 10 -3 eV 2 Dominated by Atmospheric SK sin θ 13 < 0.20 (CHOOZ) 0.50 < sin θ 12 < 0.61 (SNO) 0.6 < sin θ 23 < 0.8 (ATM) @ 90 % CL
CONNECTION WITH COLLIDER CONNECTION WITH COLLIDER PHYSICS PHYSICS ➲ production of heavy Neutrinos (N) pp ⇒ l + l '+ N l,l' =e, µ,τ @LHC [A. A . Ali, A A.V.B .Boriso sov, , N.B .B. . Zamorin (2001)] )] e+e- ⇒ N ν ⇒ l W ν @CLIC [F. d del Aguila, , J.A. A Aguilar-Saavedra (2005)] )] ➲ Bilinear R-parity violating scenarios (AMSB,SUGRA) @Tevatron and LHC [Va Valle e et al., ., d de C Campos et al.] .]
Production of Heavy N Production of Heavy N pp ⇒ l + l '+ N l=e, µ,τ @LHC [A. A . Ali, A A.V.B .Boriso sov, , N.B .B. . Zamorin (2001)] )] σ (pp ⇒ l + l '+ N) = 0.8 (1-½ δ ll' ) |U lN U l'N | 2 F(√s,m N ) fb √s = 14 TeV
Production of Heavy N Production of Heavy N
Production of Heavy N Production of Heavy N e+e- ⇒ N ν ⇒ l W ν @CLIC [F. d del Aguila, , J.A. A Aguilar-Saavedra (2005)] )] √s = 3 TeV can detect heavy Majorana/Dirac N with m N = 1-2 TeV
Production of Heavy N Production of Heavy N
Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models
Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models
Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models Electroweak symmetry breaking: the two Higgs doublets H d and H u and the sneutrino acquire a vev. The symmetry is radiatively broken in AMSB and SUGRA
Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models
Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models Dependence on AMSB parameters
Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models Dependence on AMSB parameters
Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models Dependence on parameters ε 's and Λ 's
Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models for fixed BrpV parameters Allow region in m 0 x m 1/2
Bilinear R-parity Violating Bilinear R-parity Violating SUSY Models SUSY Models
Recommend
More recommend