Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck–Dine baryogenesis • Natural if SUSY+Inflation • Can explain matter 12
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck–Dine baryogenesis • Natural if SUSY+Inflation • Can explain matter • Can explain dark matter 12
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck–Dine baryogenesis • Natural if SUSY+Inflation • Can explain matter • Can explain dark matter • Predictions can be tested soon 12
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Inflation 13
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Inflation All matter is produced during reheating after inflation. 13
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Inflation All matter is produced during reheating after inflation. SUSY ⇒ flat directions. During inflation, scalar fields are displaced from their minima. 13
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck – Dine baryogenesis 14
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck – Dine baryogenesis at the end of inflation a scalar condensate develops a large VEV along a flat direction 14
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck – Dine baryogenesis at the end of inflation a scalar condensate develops a large VEV along a flat direction 14
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck – Dine baryogenesis at the end of inflation a scalar condensate develops a large VEV along a flat direction 14
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck – Dine baryogenesis at the end of inflation a scalar condensate develops a large VEV along a flat direction CP violation is due to time-dependent background. 14
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck – Dine baryogenesis at the end of inflation a scalar condensate develops a large VEV along a flat direction CP violation is due to time-dependent background. Baryon asymmetry: φ = | φ | e iωt 14
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck – Dine baryogenesis: an example [Dine+AK, Rev.Mod.Phys.] 15
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck – Dine baryogenesis: an example [Dine+AK, Rev.Mod.Phys.] Suppose the flat direction is lifted by a higher dimension operator W n = 1 M n Φ n +3 . The expansion of the universe breaks SUSY and introduces mass terms m 2 ∼ ± H 2 . 15
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck – Dine baryogenesis: an example [Dine+AK, Rev.Mod.Phys.] Suppose the flat direction is lifted by a higher dimension operator W n = 1 M n Φ n +3 . The expansion of the universe breaks SUSY and introduces mass terms m 2 ∼ ± H 2 . The scalar potential: 1 V = − H 2 | Φ | 2 + M 2 n | Φ | 2 n +4 15
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Affleck – Dine baryogenesis: an example [Dine+AK, Rev.Mod.Phys.] Suppose the flat direction is lifted by a higher dimension operator W n = 1 M n Φ n +3 . The expansion of the universe breaks SUSY and introduces mass terms m 2 ∼ ± H 2 . The scalar potential: 1 V = − H 2 | Φ | 2 + M 2 n | Φ | 2 n +4 E ∼ 10 15 Assume the inflation scale GeV The Hubble constant H I ≈ E 2 /M p ≈ 10 12 GeV . T R ∼ 10 9 GeV 15
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 In this example, the final baryon asymmetry is n B ( ρ I /T R ) ∼ n B n B T R ρ Φ ∼ n γ n Φ m Φ ρ I � ( n − 1) � � ( n +1) T R M p � 10 − 10 ∼ 10 9 GeV m 3 / 2 16
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 In this example, the final baryon asymmetry is n B ( ρ I /T R ) ∼ n B n B T R ρ Φ ∼ n γ n Φ m Φ ρ I � ( n − 1) � � ( n +1) T R M p � 10 − 10 ∼ 10 9 GeV m 3 / 2 Correct baryon asymmetry for n = 1 . 16
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation of the Affleck-Dine condensate ✒ ✑ t x 17
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation of the Affleck-Dine condensate ✒ ✑ [AK, Shaposhnikov] t x 17
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation of the Affleck-Dine condensate ✒ ✑ [AK, Shaposhnikov] small inhomogeneities can grow t x 17
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation of the Affleck-Dine condensate ✒ ✑ [AK, Shaposhnikov] small inhomogeneities can grow unstable modes: ω 2 − U ′′ ( φ ) � 0 < k < k max = t x 17
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation of the Affleck-Dine condensate ✒ ✑ [AK, Shaposhnikov] small inhomogeneities can grow unstable modes: ω 2 − U ′′ ( φ ) � 0 < k < k max = ⇒ Lumps of baryon condensate t x 17
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation of the Affleck-Dine condensate ✒ ✑ [AK, Shaposhnikov] small inhomogeneities can grow unstable modes: ω 2 − U ′′ ( φ ) � 0 < k < k max = ⇒ Lumps of baryon condensate ⇒ Q-balls t x 17
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation ≈ pattern formation ✒ ✑ Familiar example: 18
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Numerical simulations of the fragmentation 60 60 40 40 20 20 0 0 60 40 20 0 0 0 20 20 40 40 60 60 [Kasuya, Kawasaki] 19
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Two-dimensional charge density plots [Multamaki]. 40 40 40 40 30 30 30 30 20 20 20 20 10 10 10 10 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 (a) mt = 0 (b) mt = 75 (c) mt = 150 (d) mt = 375 40 40 40 40 30 30 30 30 20 20 20 20 10 10 10 10 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 (e) mt = 525 (f) mt = 675 (g) mt = 825 (h) mt = 900 20
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Three-dimensional charge density plots [Multamaki]. (i) mt = 900 (j) mt = 1050 (k) mt = 1200 (l) mt = 1350 21
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation of AD condensate can produce Q-balls ✒ ✑ t x 22
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation of AD condensate can produce Q-balls ✒ ✑ SUSY Q-balls may be stable or unstable t x 22
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation of AD condensate can produce Q-balls ✒ ✑ SUSY Q-balls may be stable or unstable if stable ⇒ dark matter t x 22
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 ✓ ✏ Fragmentation of AD condensate can produce Q-balls ✒ ✑ SUSY Q-balls may be stable or unstable if stable ⇒ dark matter Affleck−Dine condensate baryonic Q−balls baryons stable unstable t x dark matter Dark matter in the form of stable SUSY Q-balls? 22
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Stable Q-balls as dark matter 23
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Stable Q-balls as dark matter Q-balls can accommodate baryon number at lower energy than a nucleon ⇒ B-Balls catalyze proton decay [AK,Kuzmin,Shaposhnikov,Tinyakov] Signal: 23
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Stable Q-balls as dark matter Q-balls can accommodate baryon number at lower energy than a nucleon ⇒ B-Balls catalyze proton decay [AK,Kuzmin,Shaposhnikov,Tinyakov] Signal: ✛ ✘ � � ρ dE GeV dl ∼ 100 1 g / cm 3 cm ✚ ✙ 23
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Stable Q-balls as dark matter Q-balls can accommodate baryon number at lower energy than a nucleon ⇒ B-Balls catalyze proton decay [AK,Kuzmin,Shaposhnikov,Tinyakov] Signal: ✛ ✘ � � ρ dE GeV dl ∼ 100 1 g / cm 3 cm ✚ ✙ Heavy ⇒ low flux 23
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Stable Q-balls as dark matter Q-balls can accommodate baryon number at lower energy than a nucleon ⇒ B-Balls catalyze proton decay [AK,Kuzmin,Shaposhnikov,Tinyakov] Signal: ✛ ✘ � � ρ dE GeV dl ∼ 100 1 g / cm 3 cm ✚ ✙ Heavy ⇒ low flux ⇒ experimental limits from Super-Kamiokande and other large detectors 23
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Present experimental limits [Arafune et al. ]; 24
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 A “candidate event” [Lattes, Fujimoto and Hasegawa, Phys.Rept. 65 , 151 (1980)] 25
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Unstable B-balls 26
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Unstable B-balls Gravity mediated SUSY breaking typically produces potentials which grow as ∼ φ 2 up to the Planck scale. Hence, Q-balls are unstable . 26
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Unstable B-balls Gravity mediated SUSY breaking typically produces potentials which grow as ∼ φ 2 up to the Planck scale. Hence, Q-balls are unstable . Decay of Q-balls results in late non-thermal production of LSP. 26
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Unstable B-balls Gravity mediated SUSY breaking typically produces potentials which grow as ∼ φ 2 up to the Planck scale. Hence, Q-balls are unstable . Decay of Q-balls results in late non-thermal production of LSP. Ordinary and dark matter arise from the same process. Hence, one may be able to explain why Ω matter and Ω dark are not very different . [AK;Fijii,Yanagida; Enqvist, McDonald; Laine, Shaposhnikov] 26
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Ω dark / Ω matter ∼ 6 27
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Ω dark / Ω matter ∼ 6 • Dark matter is stable Q-balls [AK; Laine, Shaposhnikov] 27
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Ω dark / Ω matter ∼ 6 • Dark matter is stable Q-balls [AK; Laine, Shaposhnikov] • Dark matter is LSP produced non-thermally from decay of unstable Q-balls [Enqvist, McDonald; Fujii, Hamaguchi; Fujii, Yanagida] 27
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Ω dark / Ω matter ∼ 6 • Dark matter is stable Q-balls [AK; Laine, Shaposhnikov] • Dark matter is LSP produced non-thermally from decay of unstable Q-balls [Enqvist, McDonald; Fujii, Hamaguchi; Fujii, Yanagida] • Dark matter is gravitino produced non-thermally from decay of unstable Q-balls [Fujii, Yanagida; Kawasaki et al.; AK, Shoemaker] 27
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Ω B − ball / Ω matter ∼ 6 28
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Ω B − ball / Ω matter ∼ 6 • Gauge-mediated SUSY breaking 28
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Ω B − ball / Ω matter ∼ 6 • Gauge-mediated SUSY breaking • Q B ∼ 10 26 ± 2 (in agreement with numerical simulations) 28
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Ω B − ball / Ω matter ∼ 6 • Gauge-mediated SUSY breaking • Q B ∼ 10 26 ± 2 (in agreement with numerical simulations) More specifically, Ω B − ball / Ω matter ∼ 6 implies � − 1 / 2 η B ∼ 10 − 10 � M SUSY � � Q B 10 26 TeV 28
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Ω B − ball / Ω matter ∼ 6 29
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Ω B − ball / Ω matter ∼ 6 30
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Astrophysical constraints 31
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Astrophysical constraints • Q-balls pass through ordinary stars and planets 31
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Astrophysical constraints • Q-balls pass through ordinary stars and planets • SUSY Q-balls accumulate inside white dwarfs and neutron stars 31
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Astrophysical constraints • Q-balls pass through ordinary stars and planets • SUSY Q-balls accumulate inside white dwarfs and neutron stars • SUSY Q-balls can convert nuclear matter into squark condensate 31
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Astrophysical constraints • Q-balls pass through ordinary stars and planets • SUSY Q-balls accumulate inside white dwarfs and neutron stars • SUSY Q-balls can convert nuclear matter into squark condensate – first published estimates underestimated the rates 31
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Astrophysical constraints • Q-balls pass through ordinary stars and planets • SUSY Q-balls accumulate inside white dwarfs and neutron stars • SUSY Q-balls can convert nuclear matter into squark condensate – first published estimates underestimated the rates – new rates too high, unless the flat direction is lifted by baryon number violating operators . 31
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Interactions of SUSY Q-balls with matter (old picture) Q−ball x 1 ∝ χ , slow m 2 quark This process was thought to limit the rate at which the Q-balls χ could process baryonic matter. Lifetimes of neutron stars were quark though to be greater than the age of the universe x 32
Alexander Kusenko (UCLA/Kavli IPMU) ICTP, 2015 Interactions of SUSY Q-balls with matter (correct picture) Q−ball There is a Majorana mass term for quarks inside coming from quark the quark-squark-gluino vertex. Probability ∼ 1 for a quark to x reflect as an antiquark. Very fast! antiquark [AK, Loveridge, Shaposhnikov]. 33
Recommend
More recommend