d sseldorf germany
play

Dsseldorf, Germany Dierk Raabe, Res Metallica Symposium, Department - PowerPoint PPT Presentation

From grains to atoms: ping-pong between experiment and simulation for understanding microstructure mechanisms P.-P. Choi, M. Kuzmina, J. Deges, M.J. Yao, O. Cojocaru-Miredin, I. Povstugar, C. Liebscher, M. Lipinska-Chwalek, S. Katnagallu, D.


  1. From grains to atoms: ping-pong between experiment and simulation for understanding microstructure mechanisms P.-P. Choi, M. Kuzmina, J. Deges, M.J. Yao, O. Cojocaru-Miredin, I. Povstugar, C. Liebscher, M. Lipinska-Chwalek, S. Katnagallu, D. Ponge, M. Herbig, C. Tasan, A. Stoffers, S. Sandlöbes, T. Hickel, J. Neugebauer, J. Mayer, C. Scheu, G. Eggeler, D. Raabe Düsseldorf, Germany Dierk Raabe, Res Metallica Symposium, Department of Materials Engineering, KU Leuven, May11th 2016

  2. Zeitalter tragen die Namen von Materialien Models Experiment 1

  3. Complex materials: atomic scale view Atom Probe: Imaging atoms High Solar Cells temperature materials Strong light- weight steels 2

  4. Complex materials: atomic scale view Atom Probe: Imaging atoms High Solar Cells temperature materials Strong light- weight steels 3

  5. Atom Probe Tomography (APT) Position sensitive detector Ion sequence R  50 nm X 1 , Y 1 , ToF 1 T  20 – 100 K X 2 , Y 2 , ToF 2 X 3 , Y 3 , ToF 3 X 4 , Y 4 , ToF 4 The specimen is the lens X 5 , Y 5 , ToF 5 …….. V DC or  V p + Time of flight 3D point cloud data Time of flight  chemical identity Position of hit  X-Y coordinates Evaporation sequence  Z coordinate 4

  6. Atom Probe Tomography (APT): directions for structure resolution approach 1: use evaporation anisotropy It‘s a point cloud can you get structure? approach 2: combine APT withTEM / SEM / STEM 5 Guo et al phys rev let. 2014, Duarte et al. Science 341, 372 (2013)

  7. Atom Probe Tomography (APT): evaporation anisotropy 6

  8. Atom Probe Tomography (APT): evaporation anisotropy 7

  9. Atom Probe Tomography (APT): evaporation anisotropy 8

  10. Atom Probe Tomography (APT): evaporation anisotropy 9

  11. Atom Probe Tomography (APT): evaporation anisotropy (002) planes 10

  12. Atom Probe Tomography (APT): evaporation anisotropy (111) planes 11

  13. Field desorption image; example Fe 3 Al (001) (012) (011) (113) (112) (111) 12 12 Herbig et al., phys rev let. 2014, Guo et al phys rev let. 2014

  14. Lattice plane reconstruction: APT crystallography Fe 3 Al (only Al displayed) 0.33 nm 0.25 nm [-1-12] Atom probe crystallography: Chemistry and structure in 3D [111] 13 Kuzmina et al. Science 349 (2015)

  15. Lattice plane reconstruction: APT crystallography Fe 3 Al (only Al displayed) 0.33 nm 0.25 nm 2 nm [-1-12] Atom probe crystallography: Chemistry and structure in 3D [111] 14 Kuzmina et al. Science 349 (2015)

  16. Experimental setup for correlative TEM – APT probing Ga 3+ Ions Principle e - sample modified single- tilt TEM retainer 52 ° TEM : During tilt around holder axis tip always stays APT : Defined sample orientation FIB : Tip is cut parallel to in focus range, whole in all instruments makes it holder axis. sample in focus (!). possible to merge information. Li et al. phys rev let. 2014 Herbig et al., phys rev let. 2014 15 Guo et al phys rev let. 2014, Duarte et al. Science 341, 372 (2013)

  17. Experimental setup for correlative TEM – APT probing Ga 3+ Ions Principle e - sample modified single- tilt TEM retainer 52 ° TEM : During tilt around holder axis tip always stays APT : Defined sample orientation FIB : Tip is cut parallel to in focus range, whole in all instruments makes it holder axis. sample in focus (!). possible to merge information. Li et al. phys rev let. 2014 Herbig et al., phys rev let. 2014 16 Guo et al phys rev let. 2014, Duarte et al. Science 341, 372 (2013)

  18. Correlative TEM-APT probe for 5D GB segregation analysis BF-STEM micrograph of cold-drawn Fe-C 100 nm e - beam Scanning nano beam diffraction Nano beam diffraction (00-1) (010) (-100) (ASTAR) 17 Acta Mat 61 (2013) 3172, Herbig et al. phys rev let. 2014

  19. Correlative TEM-APT probe for 5D GB segregation analysis Carbon atoms 5 crystal. parameters N chemical species 50 nm 18 Herbig phys rev let., (2014); Kuzmina et al. Science 349 (2015) Li. phys rev. let (2014)

  20. Segregation at dislocation lines ( ε =50% & 450 ° C/6h): Fe-9wt% Mn • Mn • Fe Mn 11 at% isosurface 19 Kuzmina et al. Science 349 (2015) Li. phys rev. let (2014)

  21. Correlated microscopy LAGB (50%CR+450 ° C/6h) Fe-9%Mn • Mn • Fe Mn 11 at% isosurface 20 Kuzmina et al. Science 349 (2015) Li. phys rev. let (2014)

  22. Segregation at dislocation lines ( ε =50% & 450 ° C/6h): Fe-9wt% Mn • Mn • Fe Mn 11 at% isosurface 21 Fe-Mn: segregation & reversion: trends for middle Mn steels

  23. Complex materials: atomic scale view Atom Probe: Imaging atoms High Solar Cells temperature materials Strong light- weight steels 22

  24. New materials for key energy technologies: Turbine materials 75% energy conversion via turbines s <44% efficiency 23 Source: Siemens Courtesy: Siemens

  25. New materials for key energy technologies: Turbine materials 24 Source: Siemens Courtesy: Siemens

  26. Example: 4th generation superalloys for turbine blades (SFB / TR 103) Al Co Re 20 nm iso. 56 at.% Ni source GE 25

  27. Complex materials: atomic scale view Atom Probe: Imaging atoms High Solar Cells temperature materials Strong light- weight steels 26

  28. New materials for key energy technologies: Mobility SUV sales, Germany courtesy: R. Boesenkool, SMEA conference, Sheffield 27 Courtesy: Maybach, Siemens, ThyssenKrupp, VW, IG Metall Eng.

  29. Fe-30%Mn-8%Al-1.2%C – 10-18% Weight reduction Nanostructured Fe-based superalloy 28

  30. Characterizing Fe-Mn-Al-C  / κ steel by correlative HRSTEM / APT [001]  / κ HRSTEM [010]  / κ 2D structural analysis with [100]  / κ atomic resolution - Coherency - Lattice parameter gradient - Site occupancy - Interface structure APT 3D chemical analysis with near Al atomic resolution APT Mn/Fe - 3D morphology C - Elemental partitioning C  9.0 at.% - Chemical gradients DFT supercell of κ -carbide 20nm HAADF-STEM courtesy: P. Dey, T. Hickel Nanostructured Fe-based superalloy 29

  31. Fe-30%Mn-8%Al-1.2%C – 10-18% Weight reduction 30

  32. ICME applied to dual phase steel 1µm SiO 2 pattern Deformation Imaging & DIC Sectioning Strain map Experiments Simulations Digital model Indents Spectral solver Strain map & stress map 31 Integrated Computational Materials Engineering: DP steel

  33. Martensite: Hierarchical microstructure analysis C Morsdorf et al. Acta Mater 95 (2015) 366 32 Integrated Computational Materials Engineering: DP steel

  34. In-situ tensile testing: role of coarse lath in martensite fracture SEM – in-situ tensile 33 Integrated Computational Materials Engineering: DP steel

  35. Damage statistics in dual phase steels D M : martensite damage; D M-F : martensite-ferrite decohesion Tasan et al. Annu. Rev. Mater. Res.45 (2015) 391 34 Integrated Computational Materials Engineering: DP steel

  36. Düsseldorf Advanced MAterial Simulation Kit, DAMASK Freeware, GPL 3 Crystal plasticity & phase field: Mechanics, damage, phase transformation, diffusion > 15 years of development > 50 man years of expertise > 50.000 lines of code Pre- and post-processing Blends with MSC.Marc and Abaqus Standalone (FFT) spectral solver Many user groups http://DAMASK.mpie.de 35 DAMASK.mpie.de

  37. Complex materials: atomic scale view Atom Probe: Imaging atoms High Solar Cells temperature materials Strong light- weight steels 36

  38. Σ 3 with steps and high EBIC contrast Si C 20 nm O 37 A. Stoffers, PRL, in press

  39. Σ 3 facets in HR-STEM 5 nm 2 nm 38

  40. APT reconstruction LEAP 5000 Si C nm 39 Stoffers et al, 2015 PRL

  41. Message & Conclusions Example Catalysis Example Hydrogen based energy Example LED Example Soft magnetic materials Example Thin film solar cells Example Turbines 40

  42. The Düsseldorf Max-Planck Team 41 www.mpie.de

Recommend


More recommend