coulomb interactions in eft
play

Coulomb Interactions in EFT Gautam Rupak Mississippi State - PowerPoint PPT Presentation

Coulomb Interactions in EFT Gautam Rupak Mississippi State University EMMI: The Systematic Treatment of the Coulomb Interaction in Few-Body Systems Darmstadt, Jan 11-15, 2016 Motivations Astrophysics Low energy reactions dominate


  1. Coulomb Interactions in EFT Gautam Rupak Mississippi State University EMMI: The Systematic Treatment of the Coulomb Interaction in Few-Body Systems Darmstadt, Jan 11-15, 2016

  2. Motivations Astrophysics • Low energy reactions dominate • Need accurate cross sections but hard to measure experimentally • Model-independent theoretical calculations important Theoretical • Weakly bound systems • First principle calculation Use Effective Field Theory

  3. Main Issues • EFT power-counting • Practical implementation The first item is of paramount importance because you want to make error estimates even when resumming potentially sub-leading pieces for practical reasons. I concentrate on the power-counting.

  4. EFT: the long and short of it • Identify degrees of freedom expansion in Q L = c 0 O (0) + c 1 O (1) + c 2 O (2) + · · · Λ Hide UV ignorance IR explicit - short distance - long distance • Determine from data (elastic, inelastic) c n • EFT : ERE + currents + relativity Not just Ward-Takahashi identity

  5. Weakly Bound Systems i A ( p ) = 2 π p cot δ 0 − ip = 2 π i i 2 p 2 + · · · − ip µ µ − 1 /a + r --- Large scattering length a >> 1 / Λ rp 2 i A ( p ) ≈ − 2 π i  1 + 1 � 1 /a + ip + · · · µ 1 /a + ip 2 EFT non-perturbative + + + · · · − C 0 Weinberg ’90 2 π p ⇒ C 0 = 2 π a − i i A ( p ) = Bedaque, van Kolck ’97 C 0 + i µ 1 µ Kaplan, Savage, Wise ’98 large coupling

  6. Proton-proton in EFT = + + + ⋅ ⋅ ⋅ + + + ⋅ ⋅ ⋅ 2 π = 1 1 α M − 1 + 3 λ d − 4 − ln µ π d − 3 − 2 α µ [ 2 C E ] a − µC 0 Kong, Ravndal 1999 In EFT there is no way to relate coupling from n-p and p-p channel.

  7. Dimer-field C 0 → g 2 ∆ Doesn’t work so nicely for p-d. No enhancement of Coulomb ladder: physics missing!

  8. Fundamental Deuteron ( E d , ⃗ ( E d , ⃗ p ) k ) e 2 k ) 2 ∼ e 2 ≃ p 2 p − ⃗ ( ⃗ ( E n , ⃗ ( E n , ⃗ p ) k ) ( E d , ⃗ p ) p − ⃗ q ⃗ ( E d , ⃗ k ) q ≃ e 4 � d 3 q ⃗ 1 1 E T − ( q − p ) 2 / (2 µ ) q 2 ( q − p + k ) 2 ∼ e 2 α µ p 2 p ( E n , ⃗ ( E d , ⃗ p ) p + ⃗ q − ⃗ k )

  9. n-photon exchanges n th − loop : ∼ e 2 ◆ n ✓ α µ p 2 p It is clear that we will have the right physics if the in the EFT the dimer propagator has the right physical cuts. Use the dressed dimer propagator p ) = 1 ∆ → 2 ⇡ 1 D ( p 0 , ~ µg 2 p − � + p 2 / 4 − µp 0 2 � � D ( E d + q 0 , ~ p ) ∼ ∼ ( q 2 − p 2 ) / 4 − M N q 0 q 2 − p 2 Put nucleon on pole, IR enhancement. Coulomb ladder recovered

  10. Coulomb Ladder = + + + ... x x put nucleons on-shell

  11. But ... what happens if we also include nucleon-exchange?

  12. Key Insight In p-d scattering we either have have a deuteron- nucleon or 3-nucleon state. The latter is off-shell by deuteron breakup and for these diagrams the loop momentum need not scale with but with γ ∼ Q p

  13. Photon iteration again This loop is not IR enhanced but larger by 1/Q Rupak, Kong 2001 = 4 πα Z d × p 2 nucleon lines always scale as M/Q^2

  14. Power-Counting After we put a single nucleon in every loop on-shell, either no no nucleon line or two nucleon lines exists. Z d 3 q ∼ Q 3 or p 3 (1) Loop : (2) Nucleon propagator : M N /Q 2 (3) Dressed dimer : Q/q 2 (4) photon : 1 /q 2 Usual one when p~Q

  15. Examples (a) (b) (c) (d) (e) (f) (g) (h) Rupak, Kong NPA 717, 73 (2003)

  16. On blackboard

  17. More Diagrams (a) (b) (c) = + + + + + (d)

  18. On blackboard

  19. Quartet Channel -40 p-d -60 (0) δ 40 60 80 100 n-d -100 k (MeV) see König’s and Vanasse’s talk

  20. Go All The Way -- go beyond counting IR enhancement -- explicitly identify three scales Q, p, α µ see van Kolck’s talk

  21. Reactions in lattice EFT • Consider: a ( b, γ ) c • Need effective “cluster” Hamiltonian -- acts in cluster coordinates, spins,etc. • Calculate reaction with cluster Hamiltonian. Many possibilities --- traditional methods, continuum EFT, lattice method Rupak & Lee, PRL 2013, arXiv:1302.4158 Pine, Lee, Rupak, EPJA 2013, arXiv:1309.2616 Rupak & Ravi, PLB 2014, arXiv:1411.2436 Elhatisari et al, Nature 528, 111 ( 2015 ) , arXiv:1506.03513

  22. Spherical Wall 0.05 3% fitting error propagates 0.04 Analytic T fi (MeV − 1 ) b=1/100 MeV − 1 0.03 Gamow peak b=1/200 MeV − 1 6 keV 0.02 0.01 0 0 200 400 600 800 1000 1200 E (keV) s γ 2 Λ ( p ) = | T fi ( p ) | 8 π C 2 η Kong, Ravndal 1999 Λ EF T (0) ≈ 2 . 51 Rupak, Ravi PLB 2014 Lattice fit : Λ (0) ≈ 2 . 49 ± 0 . 02

  23. Conclusions • Power-counting loop momenta in p-d • Identify powers of three scales • Iterating sub-leading pieces could be trouble • Non-analytic behavior at very low momentum • Big picture

  24. Thank you

Recommend


More recommend