using kinematic distributions within efts
play

Using kinematic distributions within EFTs Veronica Sanz (Sussex) - PowerPoint PPT Presentation

Using kinematic distributions within EFTs Veronica Sanz (Sussex) Higgs+jets (IPPP, Durham) Outline New Physics and EFTs Anomalous couplings vs EFTs The set-up Current status EFT->Models Limitations of EFTs New Physics


  1. Using kinematic distributions within EFTs Veronica Sanz (Sussex) Higgs+jets (IPPP, Durham)

  2. Outline New Physics and EFTs � Anomalous couplings vs EFTs � The set-up � Current status � EFT->Models � Limitations of EFTs

  3. New Physics and EFTs

  4. The guide to discover New Physics may come from precision, and not through direct searches

  5. The guide to discover New Physics may come from precision, and not through direct searches New Physics could be heavy � as compared with the channel we look at � Effective Theory approach

  6. The guide to discover New Physics may come from precision, and not through direct searches New Physics could be heavy � as compared with the channel we look at � Effective Theory approach Example. H W s . 4 M 2 ˆ Φ H † W † 2HDMs ( H † σ a D µ H ) D ν W a µ ν

  7. EFT Bottom-up approach � operators w/ SM particles and symmetries, plus the newcomer, the Higgs Buchmuller and Wyler. NPB (86) L BSM = L SM + L d =6 + . . . HDOs modification of couplings of SM particles Many such operators, but few affect the searches we do

  8. EFT Bottom-up approach � operators w/ SM particles and symmetries, plus the newcomer, the Higgs Many such operators but few affect the searches we do + Example 1. LEP physics Ellis, VS, You. 1410.7703

  9. EFT Bottom-up approach � operators w/ SM particles and symmetries, plus the newcomer, the Higgs Many such operators but few affect the searches we do Example 2. LHC physics operators not constrained by LEP Ellis, VS, You. 1410.7703

  10. Anomalous couplings vs EFT

  11. HDOs generate HVV interactions with more derivatives � parametrization in terms of anomalous couplings Example. Higgs anomalous couplings − 1 hV V V ν ∂ µ V µ ν − 1 4 h g (1) hV V V µ ν V µ ν − h g (2) g hV V V µ ν ˜ V µ ν 4 h ˜

  12. HDOs generate HVV interactions with more derivatives � parametrization in terms of anomalous couplings Example. Higgs anomalous couplings − 1 hV V V ν ∂ µ V µ ν − 1 4 h g (1) hV V V µ ν V µ ν − h g (2) g hV V V µ ν ˜ V µ ν 4 h ˜ Feynman rule for mh>2mV ✓ ˆ ✓ ◆ ◆ V ( p 2 ) s g (1) + 2 g (2) 2 − m 2 hV V m 2 i η µ ν V V hV V h ( p 1 ) − ig (1) hV V p µ 3 p ν 2 V ( p 3 ) g hV V ✏ µ ναβ p 2 , α p 3 , β − i ˜

  13. HDOs generate HVV interactions with more derivatives � parametrization in terms of anomalous couplings Example. Higgs anomalous couplings − 1 hV V V ν ∂ µ V µ ν − 1 4 h g (1) hV V V µ ν V µ ν − h g (2) g hV V V µ ν ˜ V µ ν 4 h ˜ Feynman rule for mh>2mV V ( p 2 ) total rates, COM, h ( p 1 ) angular, � inv mass and pT V ( p 3 ) distributions

  14. Translation between EFT and Anomalous couplings − 1 hV V V ν ∂ µ V µ ν − 1 4 h g (1) − h g (2) hV V V µ ν V µ ν g hV V V µ ν ˜ V µ ν 4 h ˜ Alloul, Fuks, VS. 1310.5150 Gorbahn, No, VS. In preparation

  15. Translation between EFT and Anomalous couplings Within the EFT there are relations among anomalous couplings, e.g. TGCs and Higgs physics similarly for QGCs: also function of the same HDOs Alloul, Fuks, VS. 1310.5150 Gorbahn, No, VS. In preparation

  16. The set-up

  17. Higgs BRs eHDECAY Contino et al. 1303.3876

  18. Higgs BRs eHDECAY Contino et al. 1303.3876 Production rates and kinematic distributions depend on cuts � need radiation and detector effects Simulation tools

  19. Higgs BRs eHDECAY Contino et al. 1303.3876 Production rates and kinematic distributions depend on cuts � need radiation and detector effects Simulation tools coefficients Collider � f i X L eff = Λ 2 O i simulation i observables Limit coefficients � = new physics

  20. In this talk I use 1. Feynrules HDOs involving Higgs and TGCs Alloul, Fuks, VS. 1310.5150 links to CalcHEP, LoopTools, Madgraph... HEFT->Madgraph-> Pythia... -> FastSim/FullSim

  21. In this talk I use 1. Feynrules HDOs involving Higgs and TGCs Alloul, Fuks, VS. 1310.5150 links to CalcHEP, LoopTools, Madgraph... HEFT->Madgraph-> Pythia... -> FastSim/FullSim 2.QCD NLO HDOs involving Higgs and TGCs � VS and Williams. In prep. MCFM and POWHEG Pythia, Herwig... -> FastSim/FullSim de Grande, Fuks, Mawatari, Mimasu, VS. In preparation for MC@NLO

  22. Looking for heavy New Physics current status Ellis, VS and You. 1404.3667, 1410.7703

  23. HDOs affect momentum dependence: � angular, pT and inv mass distributions Usual searches, ex. dijet searches Dijet angular distribution

  24. HDOs affect momentum dependence: � angular, pT and inv mass distributions Usual searches, ex. TGCs kinematic distribution best way to bound TGCs � growth at high energies cutoff: resolve the dynamics of the heavy NP leading lepton pT

  25. What about Higgs physics? Using kinematics for NP : a non-SM HDO and some boost ggF VH +jets VBF

  26. What about Higgs physics? Using kinematics for NP : a non-SM HDO and some boost ggF VH +jets VBF

  27. Kinematics of associated production at LHC8 LHC8 ATLAS VH 12 simulation 10 ATLAS-CONF-2013-079 8 c W = 0 . 1 ¯ LHC8 N ev 6 c W = 0 . 05 ¯ 4 2 SM 0 0 50 100 150 200 250 p T H GeV L Feynrules -> MG5-> pythia->Delphes3 � verified for SM/BGs => expectation for EFT inclusive cross section is less sensitive than distribution

  28. Besides, breaking of blind directions requires information on HV production Global fit cW with VH without VH

  29. TGCs constrains new physics too NP SM ATLAS-CONF-2014-033 overflow bin we followed same validation procedure-> constrain HDOs

  30. Kinematic distributions in TGC and VH are complementary muhat+VH muhat+TGC all

  31. LO vs NLO, briefly

  32. Z boson p T 10 0 SM SM 10 − 1 T [ fb / 20 GeV ] c W = 0.01 c W = 0.01 ¯ ¯ NLO NLO 10 − 2 10 − 3 dp V d σ 10 − 4 10 − 5 1.4 NLO 1.2 LO 1.0 0.8 0.6 0 100 200 300 400 500 600 700 p V T [ GeV ] MCFM in development

  33. VBF, briefly

  34. Kinematics of VBF also modified � yet more difficult discrimination LHC13 LHC13 0.09 ∆ η jj m jj 0.06 0.08 0.05 c W = 0 . 1 ¯ c W = 0 . 1 ¯ 0.07 0.04 SM SM 0.03 0.06 0.02 0.05 0.01 0.04 0 4 5 6 7 8 9 10 400 600 800 1000 1200 1400 1600 1800 2000

  35. EFT->Models Masso and VS. 1211.1320 Gorbahn, No and VS. In preparation

  36. EFT (linear realization) vs UV-completions UV models Example 1. � tree-level operators � radion/dilaton exchange Example 2. � loop-induced operators � 2HDM and SUSY spartners

  37. radion/dilaton Example 1. Tree-level exchange g 2 ' � g 2 ✓ ◆ s ˆ Φ Φ H W + . . . 1 � s � M 2 M 2 M 2 ˆ Φ Φ Φ Φ W † H † s . M 2 ˆ Φ HEFT ✓ m H v ◆ 2 c W ' ¯ Λ M Φ

  38. radion/dilaton Example 1. Tree-level exchange g 2 ' � g 2 ✓ ◆ s ˆ Φ Φ H W + . . . 1 � s � M 2 M 2 M 2 ˆ Φ Φ Φ Φ m V h W † H † HEFT HIGGS-138 \ D0

  39. Example 2. Loop-induced γ γ H χ ± τ ± ˜ ˜ Z Z 2HDMs SUSY spartners validity is now s . 4 M 2 ˆ Φ

  40. Example 2. Loop-induced γ γ H χ ± τ ± ˜ ˜ Z Z 2HDMs SUSY spartners Gorbahn, No and VS. In preparation Masso and VS. 1211.1320 General predictions:

  41. 2HDMs work in progress LHC8 constraints: � one order of magnitude better than a global fit

  42. Limitations of EFTs

  43. LHC8 ATLAS VH 12 10 most sensitive bin: � 8 ¯ c W = 0 . 1 N ev overflow (last) bin 6 c W = 0 . 05 ¯ 4 2 SM 0 0 50 100 150 200 250 p T H GeV L At high-pT � sensitive to dynamics of new physics � breakdown of EFT To what extent can we use this bin? how far does it extend? see also Biechoetter et al 1406.7320 Englert+Spannowsky. 1408.5147 Dawson, Lewis, Zeng 1409.6299

  44. 1000 LHC8 900 c W = − 0 . 025 ¯ 800 validity 700 (GeV) 600 VH m 500 400 300 Associated production VH 200 200 250 300 350 400 450 500 V p (GeV) T distribution m W √ c = g NP Λ NP Λ NP ' g NP ( 0.5 TeV )

  45. Conclusions Absence of hints in direct searches � EFT approach to Higgs physics Higgs anomalous couplings: � rates but also kinematic distributions Complete global fit at the level of dimension-six operators � enhanced using differential information SM precision crucial: excess as genuine new physics Exploring the validity of EFT � propose benchmarks Benchmarks � correlations among coefficients, input for fit �

  46. Kinematics of associated production Kinematics of associated production pTV is more sensitive than mVH to QCD NLO � but effect not yet at the level of operator values we can bound MCFM VS and Williams. In prep.

  47. Boring and necessary details Bottom-up approach: � operators w/ SM particles and symmetries, plus the newcomer, the Higgs

  48. Boring and necessary details Bottom-up approach: � operators w/ SM particles and symmetries, plus the newcomer, the Higgs Realization of EWSB A Linear or non-linear

  49. Boring and necessary details Bottom-up approach: � operators w/ SM particles and symmetries, plus the newcomer, the Higgs Realization of EWSB A Linear or non-linear And the Higgs could be B Weak doublet or singlet

  50. Once this choice is made, expand... 1 Integrating out new physics Λ 2 v 2 U = e i Π ( h ) /f Non-linearity f 2 ...order-by-order

Recommend


More recommend