contours and regions
play

Contours and Regions Pablo Arbelez UC Berkeley I. HISTORICAL - PowerPoint PPT Presentation

Contours and Regions Pablo Arbelez UC Berkeley I. HISTORICAL MOTIVATION Some Computer Vision Prehistory Hubel and Wiesel (1981 Nobel Price winners): MEASUREMENT system INPUT Selective response: Physiological evidence for the


  1. Normalized Cuts ◮ Graph G = ( V , E , W ) ◮ Split into A , B disjoint, A ∪ B = V � � cut ( A , B ) = w ( u , v ) assoc ( A , V ) = w ( u , v ) u ∈ A , v ∈ B u ∈ A , v ∈ V cut ( A , B ) cut ( A , B ) Ncut ( A , B ) = assoc ( A , V ) + assoc ( B , V ) ◮ General case: partition using smallest eigenvectors of ( D − W ) v = λ Dv where D ii = � j W ij J. Shi and J. Malik. “Normalized Cuts and Image Segmentation”, PAMI, 2000.

  2. Do NOT Cluster Eigenvectors! Clustering eigenvector Image values leads to artifacts on uniform regions. Eigenvectors

  3. Eigenvectors Carry Contour Information We use the gradients of Image eigenvectors rather than their values. Eigenvectors

  4. Eigenvectors Carry Contour Information Gradients of eigenvectors indicate salient contours in the image.

  5. Contour Detection ◮ Multiscale Brightness, Color, Texture Gradients: � � mPb ( x , y , θ ) = α i , s G i ,σ ( s ) ( x , y , θ ) s i

  6. Contour Detection ◮ Multiscale Brightness, Color, Texture Gradients: � � mPb ( x , y , θ ) = α i , s G i ,σ ( s ) ( x , y , θ ) s i ◮ Gradients of Eigenvectors: 1 � √ λ k sPb ( x , y , θ ) = · ∇ θ v k ( x , y ) k

  7. Contour Detection ◮ Multiscale Brightness, Color, Texture Gradients: � � mPb ( x , y , θ ) = α i , s G i ,σ ( s ) ( x , y , θ ) s i ◮ Gradients of Eigenvectors: 1 � √ λ k sPb ( x , y , θ ) = · ∇ θ v k ( x , y ) k ◮ Global Probability of Boundary: � � gPb ( x , y , θ ) = β i , s G i ,σ ( s ) ( x , y , θ ) + γ · sPb ( x , y , θ ) s i

  8. Contour Detection ◮ Multiscale Brightness, Color, Texture Gradients: � � mPb ( x , y , θ ) = α i , s G i ,σ ( s ) ( x , y , θ ) s i ◮ Gradients of Eigenvectors: 1 � √ λ k sPb ( x , y , θ ) = · ∇ θ v k ( x , y ) k ◮ Global Probability of Boundary: � � gPb ( x , y , θ ) = β i , s G i ,σ ( s ) ( x , y , θ ) + γ · sPb ( x , y , θ ) s i Weights learned from training data

  9. Benefits of Globalization Thresholded Pb Thresholded gPb

  10. Benefits of Globalization Thresholded Pb Thresholded gPb

  11. Benefits of Globalization 1 iso−F 0.9 0.9 0.8 0.7 0.8 0.6 Precision 0.7 0.5 0.6 0.4 0.5 0.3 0.4 0.2 0.3 [F = 0.79] Human [F = 0.70] gPb 0.2 0.1 [F = 0.68] sPb [F = 0.67] mPb 0.1 [F = 0.65] Pb − Martin, Fowlkes, Malik (2004) 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Recall

  12. Contours to Hierarchical Regions

  13. Contours to Hierarchical Regions pb OWT-UCM Segmentation

  14. Watershed Transform ◮ Compute pb ( x , y ) = max θ pb ( x , y , θ )

  15. Watershed Transform ◮ Compute pb ( x , y ) = max θ pb ( x , y , θ ) ◮ Seed locations are regional minima of pb ( x , y )

  16. Watershed Transform ◮ Compute pb ( x , y ) = max θ pb ( x , y , θ ) ◮ Seed locations are regional minima of pb ( x , y ) ◮ Apply watershed transform

  17. Watershed Transform ◮ Compute pb ( x , y ) = max θ pb ( x , y , θ ) ◮ Seed locations are regional minima of pb ( x , y ) ◮ Apply watershed transform ◮ Catchment basins P 0 are regions

  18. Watershed Transform ◮ Compute pb ( x , y ) = max θ pb ( x , y , θ ) ◮ Seed locations are regional minima of pb ( x , y ) ◮ Apply watershed transform ◮ Catchment basins P 0 are regions ◮ Arcs K 0 are boundaries

  19. Oriented Watershed Transform (OWT) pb ( x , y ) Watershed

  20. Oriented Watershed Transform (OWT) pb ( x , y ) Watershed Subdivision

  21. Oriented Watershed Transform (OWT) pb ( x , y , θ ) Watershed Subdivision

  22. Oriented Watershed Transform (OWT) pb ( x , y , θ ) OWT Subdivision

  23. Oriented Watershed Transform (OWT) pb ( x , y , θ ) OWT Watershed

  24. Ultrametric Contour Map (UCM) ◮ Duality between closed, non-self-intersecting weighted contours and a hierarchy of regions 1 1 P. Arbel´ aez. “Boundary Extraction in Natural Images using Ultrametric Contour Maps”, POCV, 2006.

  25. Ultrametric Contour Map (UCM) ◮ Duality between closed, non-self-intersecting weighted contours and a hierarchy of regions 1 ◮ Graph G = ( P 0 , K 0 , W ( K 0 )) given by OWT 1 P. Arbel´ aez. “Boundary Extraction in Natural Images using Ultrametric Contour Maps”, POCV, 2006.

  26. Ultrametric Contour Map (UCM) ◮ Duality between closed, non-self-intersecting weighted contours and a hierarchy of regions 1 ◮ Graph G = ( P 0 , K 0 , W ( K 0 )) given by OWT ◮ Iteratively merge regions by removing minimum weight boundary 1 P. Arbel´ aez. “Boundary Extraction in Natural Images using Ultrametric Contour Maps”, POCV, 2006.

  27. Ultrametric Contour Map (UCM) ◮ Duality between closed, non-self-intersecting weighted contours and a hierarchy of regions 1 ◮ Graph G = ( P 0 , K 0 , W ( K 0 )) given by OWT ◮ Iteratively merge regions by removing minimum weight boundary ◮ Produces region tree ◮ Root is entire image ◮ Leaves are P 0 ◮ Height ( R ) is boundary threshold at which R first appears ◮ Distance ( R 1 , R 2 ) = min { Height ( R ) : R 1 , R 2 ⊆ R } 1 P. Arbel´ aez. “Boundary Extraction in Natural Images using Ultrametric Contour Maps”, POCV, 2006.

  28. Ultrametric Contour Map (UCM)

  29. Ultrametric Contour Map (UCM)

  30. Ultrametric Contour Map (UCM)

  31. OWT-UCM Preserves Boundary Quality 1 iso−F 0.9 0.9 0.8 0.7 0.8 0.6 Precision 0.7 0.5 0.6 0.4 0.5 0.3 0.4 0.2 0.3 [F = 0.79] Human [F = 0.71] gPb−owt−ucm 0.2 0.1 [F = 0.70] gPb [F = 0.58] Canny−owt−ucm 0.1 [F = 0.58] Canny 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Recall

  32. Hierarchical Segmentation Results gPb -owt-ucm ODS OIS

  33. Hierarchical Segmentation Results gPb -owt-ucm ODS OIS

  34. Empirical Evaluation

  35. Benchmarking Region Boundaries 1 iso−F 0.9 0.9 0.8 0.7 0.8 0.6 Precision 0.7 0.5 0.6 0.4 0.5 0.3 [F = 0.79] Human [F = 0.71] gPb−owt−ucm 0.4 [F = 0.67] UCM − Arbelaez (2006) [F = 0.63] Mean Shift − Comaniciu, Meer (2002) 0.2 [F = 0.62] Normalized Cuts − Cour, Benezit, Shi (2005) 0.3 [F = 0.58] Canny−owt−ucm [F = 0.58] Felzenszwalb, Huttenlocher (2004) [F = 0.58] Av. Diss. − Bertelli, Sumengen, Manjunath, Gibou (2008) 0.2 0.1 [F = 0.55] ChanVese − Bertelli, Sumengen, Manjunath, Gibou (2008) [F = 0.55] Donoser, Urschler, Hirzer, Bischof (2009) 0.1 [F = 0.53] Yang, Wright, Ma, Sastry (2007) 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Recall

  36. Region Quality ◮ Segmentation methods burdened with the constraint of producing closed boundaries

  37. Region Quality ◮ Segmentation methods burdened with the constraint of producing closed boundaries ◮ BSDS boundary benchmark might favor contour detectors

  38. Region Quality ◮ Segmentation methods burdened with the constraint of producing closed boundaries ◮ BSDS boundary benchmark might favor contour detectors ◮ Region-based performance metrics

  39. Region Quality ◮ Segmentation methods burdened with the constraint of producing closed boundaries ◮ BSDS boundary benchmark might favor contour detectors ◮ Region-based performance metrics ◮ Variation of Information

  40. Region Quality ◮ Segmentation methods burdened with the constraint of producing closed boundaries ◮ BSDS boundary benchmark might favor contour detectors ◮ Region-based performance metrics ◮ Variation of Information ◮ Rand Index

  41. Region Quality ◮ Segmentation methods burdened with the constraint of producing closed boundaries ◮ BSDS boundary benchmark might favor contour detectors ◮ Region-based performance metrics ◮ Variation of Information ◮ Rand Index ◮ Segmentation Covering

  42. Variation of Information Distance between two clusterings of data C and C ′ given by VI ( C , C ′ ) = H ( C ) + H ( C ′ ) − 2 I ( C , C ′ ) Here C and C ′ are test and ground-truth segmentations.

  43. Probabilistic Rand Index Given a set of ground-truth segmentations { G k } , PRI ( S , { G k } ) = 1 � [ c ij p ij + (1 − c ij )(1 − p ij )] T i < j where c ij is the event that pixels i and j have the same label and p ij its probability.

  44. Segment Covering Overlap between two regions R and R ′ : O ( R , R ′ ) = | R ∩ R ′ | | R ∪ R ′ | Covering of a segmentation S by a segmentation S ′ : C ( S ′ → S ) = 1 � R ′ ∈ S ′ O ( R , R ′ ) | R | · max N R ∈ S We report the covering of groundtruth by test.

  45. Region Benchmarks on the BSDS Covering PRI VI ODS OIS Best ODS OIS ODS OIS Human 0 . 73 0 . 73 − 0 . 87 0 . 87 1 . 16 1 . 16 gPb - owt - ucm 0 . 59 0 . 65 0 . 75 0 . 81 0 . 85 1 . 65 1 . 47 Mean Shift 0 . 54 0 . 58 0 . 66 0 . 78 0 . 80 1 . 83 1 . 63 Felz - Hutt 0 . 51 0 . 58 0 . 68 0 . 77 0 . 82 2 . 15 1 . 79 Canny - owt - ucm 0 . 48 0 . 56 0 . 66 0 . 77 0 . 82 2 . 11 1 . 81 NCuts 0 . 44 0 . 53 0 . 66 0 . 75 0 . 79 2 . 18 1 . 84 Total Var. 0 . 57 − − 0 . 78 − 1 . 81 − T+B Encode 0 . 54 − − 0 . 78 − 1 . 86 − Av. Diss. 0 . 47 − − 0 . 76 − 2 . 62 − ChanVese 0 . 49 − − 0 . 75 − 2 . 54 −

  46. Interactive Segmentation ◮ Relevant for graphics applications

  47. Interactive Segmentation ◮ Relevant for graphics applications ◮ Graph cuts formalism has become popular 1 , 2 , 3 ◮ User marks foreground/background ◮ Region model learned on the fly 1 Y. Boykov and M.-P. Jolly. “Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images”, ICCV, 2001 3 C. Rother, V. Kolmogorov, A. Blake. ““Grabcut”: Interactive Foreground Extraction using Iterated Graph Cuts”, SIGGRAPH, 2004 2 Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. “Lazy Snapping”, SIGGRAPH, 2004

  48. Interactive Segmentation ◮ Relevant for graphics applications ◮ Graph cuts formalism has become popular 1 , 2 , 3 ◮ User marks foreground/background ◮ Region model learned on the fly 1 Y. Boykov and M.-P. Jolly. “Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images”, ICCV, 2001 3 C. Rother, V. Kolmogorov, A. Blake. ““Grabcut”: Interactive Foreground Extraction using Iterated Graph Cuts”, SIGGRAPH, 2004 2 Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. “Lazy Snapping”, SIGGRAPH, 2004 ◮ Alternative: use precomputed segmentation tree 4 ◮ Distance ( R 1 , R 2 ) = min { Height ( R ) : R 1 , R 2 ⊆ R } ◮ Assign missing labels using closest labeled region 4 P. Arbel´ aez and L. Cohen. “Constrained Image Segmentation from Hierarchical Boundaries”, CVPR, 2008

  49. Interactive Segmentation User Annotation Automatic Refinement

  50. Interactive Segmentation

  51. Multiscale Object Analysis ◮ Real scenes are multiscale

  52. Multiscale Object Analysis ◮ Real scenes are multiscale ◮ Three scales of local cues are insufficient

  53. Multiscale Object Analysis ◮ Real scenes are multiscale ◮ Three scales of local cues are insufficient ◮ Scanning object detectors: ◮ loop over scales, loop over windows ◮ apply classifier to each image window

  54. Multiscale Object Analysis ◮ Real scenes are multiscale ◮ Three scales of local cues are insufficient ◮ Scanning object detectors: ◮ loop over scales, loop over windows ◮ apply classifier to each image window ◮ Detector input should be scale-dependent

  55. Multiscale Object Analysis ◮ Real scenes are multiscale ◮ Three scales of local cues are insufficient ◮ Scanning object detectors: ◮ loop over scales, loop over windows ◮ apply classifier to each image window ◮ Detector input should be scale-dependent ◮ Generate scale-dependent contours/segments

  56. Multiscale Object Analysis

  57. Multiscale Object Analysis

  58. Multiscale Object Analysis

  59. Multiscale Object Analysis

Recommend


More recommend