Conditional Sampling for Max-Stable Random Fields Yizao Wang Department of Statistics, the University of Michigan June 28th, 2011 7th EVA Conference, Lyon, France Joint work with Stilian A. Stoev
An Example A sample from the Smith Model (Smith 1990): A stationary (moving maxima) max-stable random field. 4 2 12 2 2 0.74 2.97 1 10 4 0.86 4 6 8 2 7.8 0 8 6 6 4 1 3.83 0 6 4 −1 0.89 8 9.67 1 0 2 12 4 2 −2 −2 −1 0 1 If only partial observations (red crosses) are provided...
What We Can Do... Four (fast) conditional samplings from the Smith Model: 8 4 0.74 6 0.74 2 2 2 12 12 2.97 2.97 1 4 1 2 4 4 2 0.74 0.86 2 0.86 6 6 2.97 2 2 7.8 7.8 0 0 1 10 8 8 10 4 6 4 4 3.83 10 3.83 10 6 6 6 0.86 −1 −1 4 0.89 0.89 8 8 4 4 6 9.67 9.67 8 8 10 2 10 2 12 12 −2 2 −2 7.8 0 8 −2 −1 0 1 −2 −1 0 1 6 2 2 6 6 4 0.74 2 0.74 2 1 2.97 2.97 3.83 0 1 1 2 4 4 6 0.86 0.86 4 4 6 6 −1 2 2 0.89 8 7.8 7.8 0 0 8 8 4 4 9.67 3.83 10 3.83 10 10 2 6 6 6 2 6 −1 −1 0.89 0.89 8 8 9.67 2 8 9.67 12 10 10 4 2 4 −2 12 12 2 −2 −2 −2 −1 0 1 −2 −1 0 1 −2 −1 0 1 ◮ Potential applications in prediction. ◮ Analytical formula impossible in general. ◮ Need models with special structures.
Max-Linear Models Definition ◮ Z 1 , . . . , Z p : iid α -Fr´ echet: P ( Z > t ) = exp {− σ α t − α } . ◮ A = ( a i , j ) ∈ R n × p given. + ◮ Let X = A ⊙ Z denote p � X i = a i , j Z j , i = 1 , . . . , n . j =1 Remark ◮ { X i } 1 ≤ i ≤ n is a spectrally discrete α -Fr´ echet process. ◮ Approximation of arbitrary max-stable process (random field) with p sufficiently large. ◮ Results valid for non-negative Z j with densities f Z j .
Conditional Sampling for Max-Linear Models Our contribution: (W and Stoev 2011) ◮ Explicit formula of conditional distribution for max-linear models (including a large class of max-stable random fields). ◮ Efficient algorithm (R package maxLinear) for large scale conditional samplings. ◮ Potential applications in prediction for extremal phenomena, e.g., environmental and financial problems. Two applications: ◮ MARMA processes (Davis and Resnick 1989, 1993). ◮ Smith model (Smith 1990).
MARMA Processes Davis and Resnick (1989, 1993) Max-autoregressive moving average process (MARMA) ( m , q ): X t = φ 1 X t − 1 ∨ · · · ∨ φ m X t − m ∨ Z t ∨ θ 1 Z t − 1 ∨ · · · ∨ θ q Z t − q , with t ∈ Z , φ i ≥ 0 , θ j ≥ 0, { Z t } t ∈ Z iid 1-Fr´ echet. Or equivalently (iff φ ∗ = � m i =1 φ i < 1) ∞ � X t = ψ j Z t − j , t ∈ N j =0 with ψ j ≥ 0 , � ∞ j =0 ψ j < ∞ (explicit formula for ψ j ).
Prediction of MARMA(3,0) processes MARMA process 80 Conditional 95% quantile Conditional median Projection predictor 60 X 40 20 0 0 50 100 150 t Prediction of a MARMA(3,0) process with φ 1 = 0 . 7 , φ 2 = 0 . 5 and φ 3 = 0 . 3, based on the observation of the first 100 values of the process.
Smith Model A stationary max-stable random field model (Smith 1990): � e t = ( t 1 , t 2 ) ∈ R 2 . X t = R 2 φ ( t − u ) M α ( d u ) , with � � � � β 1 β 2 1 β 2 1 t 2 1 − 2 ρβ 1 β 2 t 1 t 2 + β 2 2 t 2 φ ( t 1 , t 2 ) := � 1 − ρ 2 exp − . 2 2(1 − ρ 2 ) 2 π ◮ Consistent estimators for ρ, β 1 , β 2 (de Haan and Pereira 2006) ◮ A discretized version: � h 2 /α φ ( t − u j 1 j 2 ) Z j 1 j 2 , t ∈ {− q , . . . , q } 2 X t = − q ≤ j 1 , j 2 ≤ q − 1 with u j 1 j 2 = (( j 1 + 1 / 2) h , ( j 2 + 1 / 2) h ) and Z j 1 j 2 ’s iid 1-Fr´ echet.
Simulations 5 15 5 5 1 0 15 5 5 5 5 1 1 5 0 1 5 5 10 5 5 5 0 5 0 15 5 5 5 10 −1 −1 5 5 5 5 5 5 15 −2 −2 −2 −1 0 1 −2 −1 0 1 10 8 4 2 8 5 6 5 6 5 5 4 1 1 8 4 2 5 5 2 6 12 0 5 0 5 5 0 1 5 5 4 8 −1 −1 6 5 5 6 4 2 5 5 4 4 6 6 6 4 8 −2 −2 −2 −1 0 1 −2 −1 0 1 Figure: 4 conditional samplings from Smith model. Parameters: ρ = 0 , β 1 = 1 , β 2 = 1 (isotropic).
Simulations 4 2 12 2 2 5 0.74 0.74 15 10 2.97 2.97 1 10 1 4 0.86 0.86 4 6 8 2 10 7.8 5 7.8 0 0 8 6 6 4 3.83 1 3.83 0 6 4 5 −1 −1 0.89 0.89 8 10 9.67 9.67 10 2 1 12 5 2 4 −2 −2 0 −2 −1 0 1 −2 −1 0 1 Figure: 95%-quantile of the conditional marginal deviation. Parameters: ρ = − 0 . 8 , β 1 = 1 . 5 , β 2 = 0 . 7.
This Talk: an Inverse Problem and an Efficient Solution 15 5 5 5 1 0 5 15 5 5 5 1 1 5 0 1 5 5 10 5 5 5 0 5 0 15 5 5 5 10 −1 −1 5 5 5 5 5 5 15 −2 −2 −2 −1 0 1 −2 −1 0 1 10 8 4 2 8 5 6 5 6 5 5 1 4 1 8 4 2 2 5 5 6 12 5 5 0 0 5 0 1 5 5 4 8 −1 −1 6 6 5 4 5 2 5 5 4 4 6 6 4 6 8 −2 −2 −2 −1 0 1 −2 −1 0 1
Formulation of the Problem ◮ Random structures (models) X = A ⊙ Z and Y = B ⊙ Z . ◮ Predict P ( Y ∈ · | X = x ) . ◮ A ∈ R n , p and B ∈ R n B , p known. + + ◮ Key: conditional distribution P ( Z ∈ E | X = x ) =? Remark ◮ Theoretical issue: P ( Z ∈ E | X = x ) is not well defined. Rigorous treatment: regular conditional probability. ◮ Computational issue: n small, p , n B large.
A Toy Example � X 1 = Z 1 ∨ Z 2 ∨ Z 3 � 1 � 1 1 A = . X 2 = Z 1 1 0 0 (In)equality constraints on Z : Z 1 = X 2 =: � z 1 ≤ X 1 =: � Z 2 z 2 Z 3 ≤ X 1 =: � z 3 . Case 1: (red) If X 1 = X 2 = x , then Z 1 = � z 1 , Z 2 ≤ � z 2 , Z 3 ≤ � z 3 . In this case, 3 � P ( Z ∈ E | case 1 ) = δ � z 1 ( π 1 ( E )) P { Z j ∈ π j ( E ) | Z j < � z j } . j =2
A Toy Example � X 1 = Z 1 ∨ Z 2 ∨ Z 3 � 1 � 1 1 A = . X 2 = Z 1 1 0 0 (In)equality constraints on Z : = X 2 =: � Z 1 z 1 Z 2 ≤ X 1 =: � z 2 ≤ X 1 =: � z 3 . Z 3 Case 2: (blue) If x 2 = X 2 < X 1 = x 1 , then Z 1 = � z 1 , and either Z 1 = � z 1 , Z 2 = � z 2 , Z 3 ≤ � z 3 or Z 1 = � z 1 , Z 2 ≤ � z 2 , Z 3 = � z 3 . In the first case (similar for the second), 2 � P ( Z ∈ E | case 2 first ) = δ � z j ( π j ( E )) P { Z 3 ∈ π 3 ( E ) | Z 3 < � z 3 } . j =1
Observations from the Toy Example We have seen... ◮ There are subcases that the conditional distributions are easy. ◮ The subcases are determined by the equality constraints. It turns out... ◮ The desired conditional distribution is a mixture of the ones in the subcases. An inverse problem ◮ Find all combinations of equality constraints that yield valid subcases. ◮ Each subcase referred to as a hitting scenario J ⊂ { 1 , . . . , p } .
A Toy Example � X 1 = Z 1 ∨ Z 2 ∨ Z 3 . X 2 = Z 1 Case 1: (red) If X 1 = X 2 = x , then Z 1 = � z 1 , Z 2 < � z 2 , Z 3 < � z 3 and J = { 1 } . Case 2: (blue) If x 2 = X 2 < X 1 = x 1 , then Z 1 = � z 1 , Z 2 = � z 2 , Z 3 < � or Z 1 = � z 1 , Z 2 < � z 2 , Z 3 = � z 3 , z 3 and correspondingly, J = { 1 , 2 } or J = { 1 , 3 } . J = { 3 } is not a hitting scenario (and why?).
Hitting Scenarios J ⊂ { 1 , . . . , p } is a hitting scenario, if C J ( A , x ) ≡ { z ∈ R p z k , k ∈ J c , A ⊙ z = x } + : z j = � z j , j ∈ J , z k < � is non-empty. ◮ Not every J ∈ { 1 , . . . , p } is a valid hitting scenario. ◮ Restricted to each C J ( A , x ), ν J ( x , E ) ≡ P ( Z ∈ E | Z ∈ C J ( A , x )) � � P { Z j ∈ π j ( E ) | Z j < � = δ � z j ( π j ( E )) z j } , j ∈ J c j ∈ J ◮ { C J ( A , x ) } J ∈J mutually disjoint.
Conditional Distribution for Max-Linear Models Theorem (W and Stoev 2011) P ( Z ∈ E | X = x ) is a mixture of ν J , indexed by J ∈ J r ( A , x ). � P ( Z ∈ E | X = x ) = p J ( A , x ) ν J ( x , E ) , E ∈ R R p + J ∈J r ( A , x ) where � � � p J ( A , x ) ∝ w J := z j f Z j ( � � z j ) F Z j ( � z j ) , p J = 1 . j ∈ J j ∈ J c J ∈J r ( A , x ) J r ( A , x ): all valid hitting scenarios.
Algorithm for conditional sampling Z | X = x Algorithm I (1) compute � z , J r ( A , x ) and p J ( A , x ), and (2) sample Z ∼ P ( Z ∈ · | X = x ). Not the end of the story! ◮ We haven’t discussed how to solve the inverse problem of identification of J r ( A , x ), which is closely related to the NP-hard set cover problem. ◮ Fortunately, by the max-linear structure, with probability 1, J r ( A , x ) has a nice structure, leading to an efficient algorithm.
An Efficient Algorithm in a Nut Shell A standard algorithm takes exponentially long time to solve J r ( A , x ) (and |J r ( A , x ) | can be very large). But with probability 1, ◮ { 1 , . . . , p } = � r ( s ) (disjoint). s =1 J ( s ) } s =1 ,..., r : ◮ J r ( A , x ) determined by { J ( s ) | = 1 , s = 1 , . . . , p } . J r ( A , x ) = { J ⊂ { 1 , . . . , p } : | J ∩ J ◮ Z can be divided into conditionally independent sub-vectors { Z j } j ∈ J (1) , . . . , { Z j } j ∈ J ( r ) . ( s ) } s =1 ,..., r depending on ( A , x ) can be solved efficiently. ◮ { J
Recommend
More recommend