combinatorics of the star product in aqft
play

Combinatorics of the Star Product in AQFT Eli Hawkins Kasia Rejzner - PowerPoint PPT Presentation

Combinatorics of the Star Product in AQFT Eli Hawkins Kasia Rejzner The University of York July 2, 2019 Classical Field Theory Classical Field Theory M spacetime Classical Field Theory M spacetime E vector bundle Classical Field


  1. Combinatorics of the Star Product in AQFT Eli Hawkins Kasia Rejzner The University of York July 2, 2019

  2. Classical Field Theory

  3. Classical Field Theory • M spacetime

  4. Classical Field Theory • M spacetime • E vector bundle

  5. Classical Field Theory • M spacetime • E vector bundle • E . = Γ( M , E ) smooth sections

  6. Classical Field Theory • M spacetime • E vector bundle • E . = Γ( M , E ) smooth sections • S action

  7. Classical Field Theory • M spacetime • E vector bundle • E . = Γ( M , E ) smooth sections • S action S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell).

  8. Classical Field Theory • M spacetime • E vector bundle • E . = Γ( M , E ) smooth sections • S action S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell). • ∆ R S retarded Green’s function

  9. Classical Field Theory • M spacetime • E vector bundle • E . = Γ( M , E ) smooth sections • S action S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell). • ∆ R S retarded Green’s function S ( ϕ ; x , y ) . • ∆ A = ∆ R S ( ϕ ; y , x ) advanced

  10. Classical Field Theory • M spacetime • E vector bundle • E . = Γ( M , E ) smooth sections • S action S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell). • ∆ R S retarded Green’s function S ( ϕ ; x , y ) . • ∆ A = ∆ R S ( ϕ ; y , x ) advanced • ∆ S . = ∆ R S − ∆ A S

  11. Classical Field Theory • M spacetime • E vector bundle • E . = Γ( M , E ) smooth sections • S action S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell). • ∆ R S retarded Green’s function S ( ϕ ; x , y ) . • ∆ A = ∆ R S ( ϕ ; y , x ) advanced • ∆ S . = ∆ R S − ∆ A S • Peierls bracket of F , G : E → C : { F , G } S ( ϕ ) . = � ∆ S [ ϕ ] , F (1) ( ϕ ) ⊗ G (1) ( ϕ ) �

  12. Classical Field Theory Quantization of Free Theory • M spacetime S 0 quadratic ⇒ ∆ R S 0 ( ϕ ; x , y ) = ∆ R = S 0 ( x , y ) . • E vector bundle • E . = Γ( M , E ) smooth sections • S action S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell). • ∆ R S retarded Green’s function S ( ϕ ; x , y ) . • ∆ A = ∆ R S ( ϕ ; y , x ) advanced • ∆ S . = ∆ R S − ∆ A S • Peierls bracket of F , G : E → C : { F , G } S ( ϕ ) . = � ∆ S [ ϕ ] , F (1) ( ϕ ) ⊗ G (1) ( ϕ ) �

  13. Classical Field Theory Quantization of Free Theory • M spacetime S 0 quadratic ⇒ ∆ R S 0 ( ϕ ; x , y ) = ∆ R = S 0 ( x , y ) . • E vector bundle Denote m ( F , G )( ϕ ) . • E . = F ( ϕ ) G ( ϕ ) = Γ( M , E ) smooth sections • S action S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell). • ∆ R S retarded Green’s function S ( ϕ ; x , y ) . • ∆ A = ∆ R S ( ϕ ; y , x ) advanced • ∆ S . = ∆ R S − ∆ A S • Peierls bracket of F , G : E → C : { F , G } S ( ϕ ) . = � ∆ S [ ϕ ] , F (1) ( ϕ ) ⊗ G (1) ( ϕ ) �

  14. Classical Field Theory Quantization of Free Theory • M spacetime S 0 quadratic ⇒ ∆ R S 0 ( ϕ ; x , y ) = ∆ R = S 0 ( x , y ) . • E vector bundle Denote m ( F , G )( ϕ ) . • E . = F ( ϕ ) G ( ϕ ) = Γ( M , E ) smooth sections A distribution K on M × M defines • S action D K ( F ⊗ G )( ϕ 1 , ϕ 2 ) . = � K , F (1) ( ϕ 1 ) , G (1) ( ϕ 2 ) � S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell). • ∆ R S retarded Green’s function S ( ϕ ; x , y ) . • ∆ A = ∆ R S ( ϕ ; y , x ) advanced • ∆ S . = ∆ R S − ∆ A S • Peierls bracket of F , G : E → C : { F , G } S ( ϕ ) . = � ∆ S [ ϕ ] , F (1) ( ϕ ) ⊗ G (1) ( ϕ ) �

  15. Classical Field Theory Quantization of Free Theory • M spacetime S 0 quadratic ⇒ ∆ R S 0 ( ϕ ; x , y ) = ∆ R = S 0 ( x , y ) . • E vector bundle Denote m ( F , G )( ϕ ) . • E . = F ( ϕ ) G ( ϕ ) = Γ( M , E ) smooth sections A distribution K on M × M defines • S action D K ( F ⊗ G )( ϕ 1 , ϕ 2 ) . = � K , F (1) ( ϕ 1 ) , G (1) ( ϕ 2 ) � S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell). and an exponential star product • ∆ R S retarded Green’s function F ⋆ K G . S ( ϕ ; x , y ) . hD K ( F ⊗ G ) . = m ◦ e ¯ • ∆ A = ∆ R S ( ϕ ; y , x ) advanced • ∆ S . = ∆ R S − ∆ A S • Peierls bracket of F , G : E → C : { F , G } S ( ϕ ) . = � ∆ S [ ϕ ] , F (1) ( ϕ ) ⊗ G (1) ( ϕ ) �

  16. Classical Field Theory Quantization of Free Theory • M spacetime S 0 quadratic ⇒ ∆ R S 0 ( ϕ ; x , y ) = ∆ R = S 0 ( x , y ) . • E vector bundle Denote m ( F , G )( ϕ ) . • E . = F ( ϕ ) G ( ϕ ) = Γ( M , E ) smooth sections A distribution K on M × M defines • S action D K ( F ⊗ G )( ϕ 1 , ϕ 2 ) . = � K , F (1) ( ϕ 1 ) , G (1) ( ϕ 2 ) � S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell). and an exponential star product • ∆ R S retarded Green’s function F ⋆ K G . S ( ϕ ; x , y ) . hD K ( F ⊗ G ) . = m ◦ e ¯ • ∆ A = ∆ R S ( ϕ ; y , x ) advanced • ∆ S . = ∆ R S − ∆ A S If K ( x , y ) − K ( y , x ) = i ∆ S 0 ( x , y ), then • Peierls bracket of F , G : E → C : this is a quantization for S 0 . { F , G } S ( ϕ ) . = � ∆ S [ ϕ ] , F (1) ( ϕ ) ⊗ G (1) ( ϕ ) �

  17. Classical Field Theory Quantization of Free Theory • M spacetime S 0 quadratic ⇒ ∆ R S 0 ( ϕ ; x , y ) = ∆ R = S 0 ( x , y ) . • E vector bundle Denote m ( F , G )( ϕ ) . • E . = F ( ϕ ) G ( ϕ ) = Γ( M , E ) smooth sections A distribution K on M × M defines • S action D K ( F ⊗ G )( ϕ 1 , ϕ 2 ) . = � K , F (1) ( ϕ 1 ) , G (1) ( ϕ 2 ) � S ′′ ( φ ) is linearized equation of motion operator about ϕ ∈ E (off shell). and an exponential star product • ∆ R S retarded Green’s function F ⋆ K G . S ( ϕ ; x , y ) . hD K ( F ⊗ G ) . = m ◦ e ¯ • ∆ A = ∆ R S ( ϕ ; y , x ) advanced • ∆ S . = ∆ R S − ∆ A S If K ( x , y ) − K ( y , x ) = i ∆ S 0 ( x , y ), then • Peierls bracket of F , G : E → C : this is a quantization for S 0 . { F , G } S ( ϕ ) . = � ∆ S [ ϕ ] , F (1) ( ϕ ) ⊗ G (1) ( ϕ ) � Changing K by a smooth, symmetric function gives an equivalent star product.

  18. Quantization Maps

  19. Quantization Maps A quantization map Q : { Classical observables } → { Quantum observables } is a “choice of operator ordering”.

  20. Quantization Maps A quantization map Q : { Classical observables } → { Quantum observables } is a “choice of operator ordering”. It induces a star product by Q ( F ⋆ G ) = Q ( F ) Q ( G ) .

  21. Quantization Maps A quantization map Q : { Classical observables } → { Quantum observables } is a “choice of operator ordering”. It induces a star product by Q ( F ⋆ G ) = Q ( F ) Q ( G ) . Equivalent star products come from different choices of Q .

  22. Quantization Maps A quantization map Q : { Classical observables } → { Quantum observables } is a “choice of operator ordering”. It induces a star product by Q ( F ⋆ G ) = Q ( F ) Q ( G ) . Equivalent star products come from different choices of Q . Ordering Product K i 2 ∆ S 0 = i � ∆ R S 0 − ∆ A � Symmetric Moyal-Weyl S 0 2

  23. Quantization Maps A quantization map Q : { Classical observables } → { Quantum observables } is a “choice of operator ordering”. It induces a star product by Q ( F ⋆ G ) = Q ( F ) Q ( G ) . Equivalent star products come from different choices of Q . Ordering Product K 2 ∆ S 0 = i i � ∆ R S 0 − ∆ A � Symmetric Moyal-Weyl S 0 2 ∆ + S 0 = i Normal 2 ∆ S 0 + H Wick

  24. Quantization Maps A quantization map Q : { Classical observables } → { Quantum observables } is a “choice of operator ordering”. It induces a star product by Q ( F ⋆ G ) = Q ( F ) Q ( G ) . Equivalent star products come from different choices of Q . Ordering Product K 2 ∆ S 0 = i i � ∆ R S 0 − ∆ A � Symmetric Moyal-Weyl S 0 2 ∆ + S 0 = i Normal 2 ∆ S 0 + H Wick − i ∆ A Time-ordered ⋆ T S 0

  25. Quantization Maps A quantization map Q : { Classical observables } → { Quantum observables } is a “choice of operator ordering”. It induces a star product by Q ( F ⋆ G ) = Q ( F ) Q ( G ) . Equivalent star products come from different choices of Q . Ordering Product K i 2 ∆ S 0 = i � ∆ R S 0 − ∆ A � Symmetric Moyal-Weyl S 0 2 ∆ + S 0 = i Normal 2 ∆ S 0 + H Wick − i ∆ A Time-ordered ⋆ T S 0 The product ⋆ T will be the most useful here.

  26. Star Product by Graphs

  27. Star Product by Graphs A graph describes a multidifferential operator.

  28. Star Product by Graphs A graph describes a multidifferential operator. • The vertex j represents (a derivative of) the j ’th argument.

  29. Star Product by Graphs A graph describes a multidifferential operator. • The vertex j represents (a derivative of) the j ’th argument. • = ∆ A S 0 .

  30. Star Product by Graphs A graph describes a multidifferential operator. • The vertex j represents (a derivative of) the j ’th argument. • = ∆ A S 0 . 2 = m , i.e., m ( F , G ) = F · G . E.g., 1

Recommend


More recommend