challenges for polarimetry at the ilc
play

Challenges for Polarimetry at the ILC Moritz Beckmann, Anthony - PowerPoint PPT Presentation

Challenges for Polarimetry at the ILC Moritz Beckmann, Anthony Hartin, Jenny List DESY - FLC EUCARD Workshop Spin optimization at Lepton accelerators Mainz, Germany February 12, 2014 Outline Introduction Polarimetry in the ILC


  1. Challenges for Polarimetry at the ILC Moritz Beckmann, Anthony Hartin, Jenny List DESY - FLC EUCARD Workshop “Spin optimization at Lepton accelerators” Mainz, Germany February 12, 2014

  2. Outline • Introduction • Polarimetry in the ILC beam delivery system • Spin transport • Results • Beamline simulation • Collision effects • Polarization measurement at the disrupted beam • Beamline design in view of the polarization measurement • Impact of the laser spot size at the downstream polarimeter Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 2 / 26

  3. ILC Beam Delivery System (BDS) Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 3 / 26

  4. Laser Compton Polarimeter (Principle) dipole magnets polarized laser e ± beam detector scattered e ± e ± γ → e ± γ • Laser: Compton scattering • Scattering cross section depends on P z • Magnet chicane separates scattered e ± from beam • P z is determined from scattered electrons Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 4 / 26

  5. Polarimetry at the ILC upstream downstream IP polarimeter polarimeter e ± beamlines 150 m ~1 650 m • Two Compton polarimeters per beam to measure P z • Upstream polarimeter undisturbed by collision effects • Downstream polarimeter assesses collision effects • 0.25 % systematic uncertainty (goal) • What do these measurements tell us about the longitudinal polarization at the IP? → spin transport simulation • Aim to understand spin transport to 0.1 % Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 5 / 26

  6. Spin Precession • Spin precession in electromagnetic fields: T-BMT equation • For � B ⊥ only: ϑ spin = b(E) · ϑ orbit b ( E ) = a γ + 1 = g − 2 · E m + 1 2 ≈ 568 for 250 GeV-electrons B • Dipole magnets, no beam energy spread: spin vectors precess uniformly, | � P| conserved Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 6 / 26

  7. Spin Fan-Out in Quadrupole Magnets quadrupole magnets P' P P For illustration purposes, the second quadrupole is stronger. Two-dimensional betatron oscillations are not taken into account here. • Different precession angles after first quadrupole ⇒ polarization | � P| decreases • | � P| recovered by second quadrupole Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 7 / 26

  8. Beam-Beam Collision Effects + _ e e Pairs Beamstrahlung A. Vogel Bunches focus each other by their electromagnetic fields: • Spin fan-out (like in quadrupole magnets) • Spin flip by emission of beamstrahlung (Sokolov-Ternov effect) Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 8 / 26

  9. Spin Transport Simulation Framework beam parameters beamline layout particle / spin transport along the BDS Bmad UP IP DP polarimeter beam-beam collision polarimeter measurement Guinea-Pig++ measurement data analysis • Developed a beamline simulation (based on Bmad) • Simulate 40 000 (macro)particles per bunch, generated from beam parameters at the beginning of the BDS • Interfaced directly to the simulation of the collisions (Guinea-Pig++) Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 9 / 26

  10. Results • √ s = 500 GeV • Beam parameters according to Reference Design Report (RDR, 2007) • Collision effects also for beam parameters according to Technical Design Report (TDR, 2013) Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 10 / 26

  11. Spin Transport in the BDS: Basic Configuration polarization 0.8 0.6 0.4 - e 0.2 P z 0 | P | -0.2 -0.4 -0.6 UP IP DP -0.8 0 500 1000 1500 2000 2500 3000 3500 distance s along BDS [m] UP/DP: up-/downstream polarimeter Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 11 / 26

  12. Spin Transport in the BDS: Basic Configuration polarization ] 0.8 0 -3 relative change [10 - e -0.5 extraction 0.7995 P z line | P | quadrupoles -1 dipole chicanes 0.799 IP DP 3400 3450 3500 3550 distance s along BDS [m] DP: downstream-polarimeter • Quadrupoles cause spin fan-out • Changes in P z well below 0 . 1 % without collisions Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 12 / 26

  13. Factors affecting the spin transport (without collisions) contribution uncertainty [10 − 3 ] Beam and polarization alignment 0 . 72 (∆ ϑ bunch = 50 µ rad, ∆ ϑ pol = 25 mrad) Random misalignments (10 µ m) 0 . 43 Variation in beam parameters (few %) 0 . 03 Bunch rotation (crab cavities) < 0 . 01 Detector solenoid 0 . 01 Synchrotron radiation 0 . 005 Total (quadratic sum) 0 . 85 Now: e + e − beam collisions Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 13 / 26

  14. Spin Transport after Collision ] z long. polarization P 0.8 0 -3 relative change [10 0.79 -20 0.78 no collision no collision lumi-weighted lumi-weighted after collision after collision 0.77 measurable measurable -40 - e 0.76 IP DP 3400 3450 3500 3550 distance s along BDS [m] DP: downstream-polarimeter • Luminosity-weighted ( • ): P z of the colliding particles • Larger angular divergence / energy spread after collision • Large spin fan-out in extraction line quadrupoles Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 14 / 26

  15. Spin Transport after Collision ] z long. polarization P 0.8 0 -3 relative change [10 0.79 -20 0.78 no collision no collision lumi-weighted lumi-weighted after collision after collision 0.77 measurable measurable -40 - e 0.76 IP DP 3400 3450 3500 3550 distance s along BDS [m] DP: downstream-polarimeter • Extraction line design: restore luminosity-weighted P z ( • ) at the downstream polarimeter • Employ spin fan-out : focus beam at downstream polarimeter with half divergence angle w. r. t. the IP Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 15 / 26

  16. Spin Transport after Collision ] z long. polarization P 0.8 0 -3 relative change [10 0.79 -20 0.78 no collision no collision lumi-weighted lumi-weighted after collision after collision 0.77 measurable measurable -40 - e 0.76 IP DP 3400 3450 3500 3550 distance s along BDS [m] DP: downstream-polarimeter 2 θ x ≫ θ y ⇒ ∆ P z ∝ θ x � 2 � θ x ∆ P lum ≈ 1 4 ∆ P z ∝ z 2 P lum = P DP Idea: | R 22 (IP → DP) | = 0.5 ⇒ z z Further reading: SLAC-PUB-4692, SLAC-PUB-8397 Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 16 / 26

  17. Laser and Particle Bunch at the Downstream Polarimeter without after collision collision ~mm ~cm 0.04mm laser spot ~cm e ± beam • Without collision: entire beam exposed to laser • After collision: center of beam exposed to laser sample of scattered electrons representative? Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 17 / 26

  18. Downstream Measurement • Downstream polarimeter located in magnet chicane ⇒ particle position correlated with energy ( dispersion ) vert. particle position y [mm] 0.015 6 10 Laser spot size 0.01 10 5 10 0.005 4 10 0 0 3 10 -0.005 2 10 -0.01 -10 -0.015 10 -0.02 -20 1 -0.4 160 -0.3 180 200 -0.2 220 -0.1 240 0 particle energy [GeV] • Laser spot size at Compton-IP only ∼ 0.1 - 1 mm Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 18 / 26

  19. Downstream Measurement • Beamstrahlung correlates energy and P z ⇒ P z correlated with particle position ⇒ Selective measurement, measurement bias z 0.8 long. polarization P 0.79 0.78 0.77 laser spot size 0.76 0.75 -0.015 -15 -0.01 -10 -0.005 -5 0 0 vert. particle position y [mm] • Measurable longitudinal polarization := average P z of particles within a given (laser spot) radius Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 19 / 26

  20. Spin Transport for Different Beam Parameters no energy spread/loss RDR TDR TDR* RDR TDR TDR* ] z 0.8 0 -3 long. polarisation P relative change [10 -5 0.795 -10 0.79 before collision lumi-weighted -15 after collision 0 20 40 60 DP DP measurable (r=0.1/0.2/0.5/1.0 mm) DP: downstream polarimeter • No energy spread/loss: no discrepancy between measurement ( � ) and average P z ( � ) at downstream polarimeter • RDR → TDR: stronger focussing ⇒ higher collision intensity ⇒ larger spin fan-out in collision and afterwards Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 20 / 26

  21. Spin Transport for Different Beam Parameters no energy spread/loss RDR TDR TDR* RDR TDR TDR* ] z 0.8 0 -3 long. polarisation P relative change [10 -5 0.795 -10 0.79 before collision lumi-weighted -15 after collision 0 20 40 60 DP DP measurable (r=0.1/0.2/0.5/1.0 mm) DP: downstream polarimeter ( • ) at downstream pol. ( � ) Extraction line design: restore P lum z • Design ( | R 22 | = 0 . 5) assumes D x ≪ 1 D RDR D TDR = 0 . 17 = 0 . 3 x x • More beamstrahlung (not accounted for by design) Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 21 / 26

  22. Spin Transport for Different Spin Configurations DP IP R 22 =-0.5 after collision TDR T-BMT assuming θ spin = (aγ+1)·θ orbit at the beginning P' P TDR* T-BMT assuming θ spin = (aγ+1)·θ orbit at the beginning P P' For illustration only. All angles exaggerated. Beamstrahlung effects neglected. Moritz Beckmann DESY-FLC EUCARD Workshop Mainz 2014 22 / 26

Recommend


More recommend