ccp estimation of dynamic discrete choice models with
play

CCP Estimation of Dynamic Discrete Choice Models With Unobserved - PowerPoint PPT Presentation

CCP Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity Yitian (Sky) LIANG Department of Marketing Sauder School of Business March 7, 2013 Roadmap Summary of the paper (5 mins) Motivating example: bus engine


  1. CCP Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity Yitian (Sky) LIANG Department of Marketing Sauder School of Business March 7, 2013

  2. Roadmap ◮ Summary of the paper (5 mins) ◮ Motivating example: bus engine replacement model (Rust, 1987) (10 mins) ◮ Estimator and algorithm (10 mins) ◮ Application result in the motivating example (5 mins)

  3. Summary ◮ Motivation: unobserved heterogeneity (unobserved correlated state variables) ◮ Can’t have consistent first-stage estimates of CCP ◮ Violation of CI ◮ Develop a modified EM algorithm to estimate the structural parameters and the distribution of unobserved state variables ◮ Develop the concept of “finite dependence” (will not covered) ◮ identification? ◮ facilitate estimation?

  4. Motivating Example (Setup): Our Friend - Harold Zurcher ◮ Infinite horizon (later in the application, they set it to be finite horizon) ◮ Choice space { d 1 t , d 2 t } , i.e. replace the engine v.s keep it. ◮ State space { x t , s , ǫ t } , i.e. accumulated mileage since the last replacement, brand of the bus and transitory shocks (not observed by the econometrician) ◮ Controlled transition rule: ◮ x t + 1 = x t + 1 if d 2 t = 1. ◮ x t + 1 = 0 if d 1 t = 1. ◮ Per-period payoff: u ( d 1 t , x t , s ) = d 1 t · ǫ 1 t + ( 1 − d 1 t ) · ( θ 0 + θ 1 x t + θ 2 s + ǫ 2 t ) .

  5. Harold Zurcher Cont. ◮ Hotz and Miller (1993): difference between conditional value function can be represented by flow payoff and CCP, i.e. v 2 ( x , s ) − v ( x 1 , s ) = θ 0 + θ 1 x + θ 2 s + β log [ p 1 ( 0 , s )] − β log [ p 1 ( x + 1 , s )] . ◮ Then we have: p 1 ( x , s ) = 1 1 + exp [ v 2 ( x , s ) − v ( x 1 , s )] . ◮ Let π s be the probability a bus is brand s .

  6. Harold Zurcher Cont. (Suppose know ˆ p ) ◮ MLE, � � ˆ θ, ˆ = argmax θ,π � n log [ � s π s Π t l ( d nt | x nt , s , ˆ p 1 , θ )] . π ◮ EM Algorithm ◮ Expectation step: � � ◮ ˆ s n = s | d n , x n ; ˆ q ns = Pr θ, ˆ π, ˆ p 1 = π s Π t l ( d nt | x nt , s , ˆ ˆ p 1 , θ ) � s ′ ˆ π s ′ Π t l ( d nt | x nt , s ′ , ˆ p 1 , θ ) � N ◮ ˆ π s = 1 n = 1 ˆ q ns . N ◮ Maximization step: ˆ θ = argmax θ � n log [ � s ˆ π s Π t l ( d nt | x nt , s , ˆ p 1 , θ )] .

  7. Harold Zurcher Cont. (Update ˆ p ) ◮ Two ways to update CCP: model-based v.s non-model-based ◮ Non model based update of CCP p 1 ( x , s ) = Pr { d 1 nt = 1 | s n = s , x nt = x } E [ d 1 nt q ns | x nt = x ] = E [ q ns | x nt = x ] ◮ Sample analogue: � � t d 1 nt ˆ q ns I ( x nt = x ) n p 1 ( x , s ) = ˆ � � t ˆ q ns I ( x nt = x ) n ◮ Model based update: � , θ ( m ) � p ( m + 1 ) d nt | x nt , s , p ( m ) ( x nt , s ) = l . 1 1

  8. General Model ◮ Larger choice space, non-stationarity (i.e. finite horizon) ◮ Unobserved heterogeneity changes over time: need to estimate its transition π ( s t + 1 | s t ) . ◮ Initial value problem: need to estimate π ( s 1 | x 1 ) . ◮ Sketch of the algorithm ◮ Expectation step: sequential update q ns → π ( s 1 | x 1 ) , π ( s t + 1 | s t ) → p jt ( x , s ) . ◮ Maximization step: maximize the conditional likelihood w.r.t structural parameters.

  9. General Model - Likelihood � � � L ( d n , x n | x n 1 ; θ, π, p ) = · · · [ π ( s 1 | x n 1 ) L 1 ( d n 1 , x n 2 | x n 1 , s 1 ; θ, π, p ) s 1 s 2 s T � � � Π T × π ( s t | s t − 1 ) L t ( d nt , x n , t + 1 | x nt , s t ; θ, π, p ) . t = 2 where L t ( d nt , x n , t + 1 | x nt , s t ; θ, π, p ) j = 1 [ l jt ( x nt , s nt , θ, π, p ) f jt ( x n , t + 1 | x nt , s nt , θ )] d jnt . Π J =

  10. The Algorithm - Expectation Step Update q ( m ) nst : = L ( m ) ( s nt = s ) q ( m + 1 ) n , nst L ( m ) n where L nt ( s nt = s ) � � � � Π t − 1 � t ′ = 2 π ( s t ′ | s t ′ − 1 ) L nt ′ ( s t ′ ) � = · · · · · · π ( s 1 | x n 1 ) L n 1 ( s 1 ) s 1 s t − 1 s t + 1 s T Π T � t ′ = t + 2 π ( s t ′ | s t ′ − 1 ) L nt ′ ( s t ′ ) � × π ( s t | s t − 1 ) L nt ( s ) π ( s t + 1 | s ) L n , t + 1 ( s t + 1 )

  11. The Algorithm - Expectation Step Cont. Update π ( m ) ( s | x ) : n = 1 q ( m + 1 ) � N I ( x n 1 = x ) π ( m + 1 ) ( s | x ) = ns 1 . � N n = 1 I ( x n 1 = x ) Update π ( m + 1 ) ( s ′ | s ) : t = 2 q ( m + 1 ) ns ′ t | s q ( m + 1 ) � N � T n = 1 ns , t − 1 π ( m + 1 ) � s ′ | s � = , t = 2 q ( m + 1 ) � N � T n = 1 ns , t − 1 where the definition of q ( m + 1 ) ns ′ t | s is on page 1847.

  12. The Algorithm - Expecation Step Cont. & Maximization Step Update p ( m + 1 ) ( x , s ) : jt n = 1 d njt q ( m + 1 ) � N I ( x nt = x ) p ( m + 1 ) nst ( x , s ) = . jt n = 1 q ( m + 1 ) � N I ( x nt = x ) nst Maximization step: θ ( m + 1 ) = argmax θ q ( m + 1 ) � d nt , x n , t + 1 | x nt , s nt = s ; θ, π ( m + 1 ) , p ( m + 1 ) � � � � � log L t . nst n t s j

  13. Alternative Algorithm - Two Stage Estimator ◮ Stage 1: recover θ 1 , π ( s 1 | x 1 ) , π ( s ′ | s ) , p jt ( x t , s t ) by using the EM algorithm. ◮ Stage 2: recover θ 2 . ◮ Key idea: non-parametric representation of the likelihood (free of structural parameters): L t ( d nt , x n , t + 1 | x nt , s nt ; θ 1 , π, p ) Π J j = 1 [ l jt ( x nt , s nt , θ, π, p ) f jt ( x n , t + 1 | x nt , s nt , θ 1 )] d jnt = j = 1 [ p jt ( x nt , s nt ) f jt ( x n , t + 1 | x nt , s nt , θ 1 )] d jnt . Π J =

  14. Alternative Algorithm - Two Stage Estimator Cont. ◮ Stage 1 expectation step: update q and π ◮ Stage 1 maximization step: maximize the conditional likelihood w.r.t p and θ 1 ◮ Stage 2: given stage 1 estimates, can apply any CCP based method to recover θ 2 , i.e. Hotz and Miller (1993), BBL (2007).

  15. Back to Harold Zurcher

Recommend


More recommend