black holes in the 1 d expansion
play

Black holes in the 1/D expansion Roberto Emparan ICREA & U. - PowerPoint PPT Presentation

Black holes in the 1/D expansion Roberto Emparan ICREA & U. Barcelona (& YITP Kyoto) w/ Tetsuya Shiromizu, Ryotaku Suzuki, Kentaro Tanabe, Takahiro Tanaka Nov 1915 Feb 1917 A dimensionless, adjustable parameter is a good thing to


  1. Black holes in the 1/D expansion Roberto Emparan ICREA & U. Barcelona (& YITP Kyoto) w/ Tetsuya Shiromizu, Ryotaku Suzuki, Kentaro Tanabe, Takahiro Tanaka

  2. Nov 1915 Feb 1917

  3. A dimensionless, adjustable parameter is a good thing to have for studying a theory

  4. Quantum ElectroDynamics Perturb around �

  5. Quantum GluoDynamics SU(3) Yang-Mills theory No parameter?

  6. Quantum GluoDynamics SU( N ) Yang-Mills theory parameter!

  7. What dimensionless parameter in ?

  8. ? YM Quantum GR SU(N →∞ ) SO (D →∞ ,1)

  9. Quantum GR: SO( D -1,1) local Lorentz group # graviton polarizations grows with D BUT: No topological expansion of Feynman diagrams Strominger 1981 Bjerrum-Bohr 2004 Even worse: UV behavior infinitely bad

  10. YM Quantum GR SU(N →∞ ) SO (D →∞ ,1)

  11. Classical General Relativity D -diml Einstein’s theory Well-defined for all D Many problems can be formulated keeping D arbitrary → D = continuous parameter → expand in 1/D Kol et al RE+Suzuki+Tanabe

  12. Classical General Relativity D -diml Einstein’s theory Large D keeps essential physics of D=4 ∃ black holes ∃ gravitational waves simplifies the theory reformulation in terms of other variables?

  13. BH in D dimensions �� � ��� �� � = − 1 − � � �� � + ��� + � � �Ω ��� 1 − � � � �

  14. Localization of interactions Large potential gradient: Φ � ��� Φ � ∼ � � � � �Φ � ∼ �/� � � � � � � ⟷ ⟹ Hierarchy of scales � � � � � � ≪ � �

  15. Fixed � ��� 1 − � � → 1 � �� � → −�� � + �� � + � � �Ω ��� Flat, empty space at � “ Far-zone ” limit

  16. Black Hole scattering: no deflection “infinitely difficult to catch a line of force”

  17. Black Hole scattering No absorption of waves with wavelength � ∼ � �

  18. No interaction Holes cut out in Minkowski space

  19. We are keeping length scales ∼ � � finite as we send � → ∞ “ Far-zone ” limit

  20. Now take a limit that does not trivialize the gravitational field 0 ��� � � � − � � ∼ � � � “ Near-horizon ” limit

  21. Near-horizon geometry �� � ��� �� � = − 1 − � � �� � + ��� + � � �Ω ��� 1 − � � � � ��� � = cosh � $ � � finite � %&'� = � as � → ∞ � 2� �

  22. Near-horizon geometry 2d string bh � � → 4� − tanh � $ �� %&'� � � + �$ � �� %) � � � (cosh $) 0/� �Ω ��� � + � � Soda 1993 Grumiller et al 2002

  23. Physics at close to the � horizon is not trivial Perfect absorption of waves with � ∼ � � /� 1 ∼ �/� � “ Near-horizon ” dynamics

  24. Not an exact solution Non-trivial interaction “ Near-horizon ” dynamics

  25. Near-horizon universality 2d string bh = near-horizon geometry of all neutral non-extremal bhs rotation = local boost (along horizon) cosmo const = 2d bh mass-shift

  26. Large D Effective Theory Solve near-horizon equations integrate-out short-distance dynamics Boundary conds for far-zone fields Long-distance effective theory

  27. Black hole perturbations � all analytic Scattering Quasinormal modes Ultraspinning instability Holographic superconductors Full non-linear GR � General theory of static black holes: Soap-film theory Black droplets simple ODE Non-uniform black strings

  28. BH perturbations: How accurate? Small expansion parameter: 2 ��� not quite good for � = 4 … 2 But it seems to be �(���) not so bad in � = 4 , if we can compute to higher order 2 (in AdS: �(��2) )

  29. BH perturbations: How accurate? Small expansion parameter: 2 ��� not quite good for � = 4 … 2 But it seems to be 4(���) not so bad in � = 4 , if we can compute higher orders 2 (in AdS: �(��2) )

  30. Quite accurate Quasinormal frequency in � = 4 (vector-type) −Im 1� � − − 4D calculation − − − − − − Large D @ D=4 ℓ (angular momentum) 2 � 7 yields 6% accuracy in � = 4 Calculation up to 1 6% = 0 � �<0 2 � − 3

  31. Fully non-linear GR @ large D

  32. Large-D ⇒ neat separation bh / background ⟶ Replace bh ⟶ surface in background What eqs determine this surface?

  33. ⟶ Derive them by solving Einstein’s eqs in near-horizon zone

  34. Gradient hierarchy ⊥ Horizon: @ A ∼ � ∥ Horizon: @ C ∼ 1 D $ E ���

  35. Einstein ‘momentum-constraint’ in $ : FF G = mean curvature of ‘horizon surface’ �� � � ) = H FF D �� � + �D � + ℛ � D �Ω ��� ℛ(D) E ��� D

  36. Soap-film equation (redshifted) FF Valid up to NLO in 1/D (but not at NNLO)

  37. Some applications

  38. Soap bubble in Minkowski = Schw BH �� � = −�� � + �D � + �� � + � � �Ω ��� � = ℛ(D) −H FF G = const ⇒ ℛ J� + ℛ � = 1 ℛ(D) D E ��� E ���

  39. Black droplets Black hole at boundary of AdS D dual to CFT in BH background AdS bulk Numerical solution: AdS boundary Figueras+Lucietti+Wiseman

  40. D ℛ(D) AdS bulk AdS boundary

  41. −H FF G = const D � + ℛ(D) � 1 − D � D 1 ± ⇒ ℛ(D) J = − 1 − D � ℛ(D) D ℛ(D)

  42. Numerical code zmin = 0.000001; zmax = 0.67; r0 = .5; r @ z D 2 + z2 J 1 − r @ z D 2 N NDSolve B: r' @ z D �− ,r @ zmin D � r0 > ,r, 8 z,zmin,zmax <F 1 − r @ z D z 1 − z2

  43. Black droplets

  44. Non-uniform black strings D ℛ D Numerical solution: Wiseman

  45. Non-uniform black strings D ℛ D = 1 + 2L(D) � ∼ 1/ � G = const ⟹ L JJ (D) + L J D � + L(D) = const

  46. Non-uniform black strings ℛ D = 1 + 2L(D) L D �

  47. Limitations 1/D expansion breaks down when @ C ∼ � Highly non-uniform black strings • 1/� 1/� AdS black funnels •

  48. In progress Extensions of FF Charged black holes Rotating black holes (Time-evolving black holes)

  49. Conclusions

  50. 1/D: it works (not obvious beforehand!)

  51. Static black holes are soap bubbles at large D (up to NLO)

  52. Can we reformulate GR around D with black holes as basic (extended) objects?

  53. End

Recommend


More recommend