looking for axions with astrophysical black holes
play

Looking for axions with astrophysical black holes Sergei Dubovsky - PowerPoint PPT Presentation

Looking for axions with astrophysical black holes Sergei Dubovsky CCPP (NYU) Solvay Workshop The dark side of black holes Looking for axions with astrophysical black holes Sergei Dubovsky CCPP (NYU) Solvay Workshop The side of


  1. Looking for axions with astrophysical black holes Sergei Dubovsky CCPP (NYU) Solvay Workshop “The dark side of black holes”

  2. Looking for axions with astrophysical black holes Sergei Dubovsky CCPP (NYU) Solvay Workshop “The side of black holes” bright

  3. Plan of the Talk ✦ Brief overview of superradiance see a talk by Pani for an up to date detailed story ✦ Brief overview of axions ✦ Superradiance and local phase transitions ✦ Superradiance and supermassive black hole nurturing

  4. Generic superradiance: rotating absorbing object may serve as a source of energy Zeldovich’71 Super-radiant scattering of a massive object

  5. Generic superradiance: rotating absorbing object may serve as a source of energy Zeldovich’71 Super-radiant scattering of a massive object

  6. Generic superradiance: rotating absorbing object may serve as a source of energy Zeldovich’71 Super-radiant scattering of a massive object Super-radiant scattering of a wave

  7. Generic superradiance: rotating absorbing object may serve as a source of energy Zeldovich’71 Super-radiant scattering of a massive object Super-radiant scattering of a wave

  8. Penrose Process Penrose’69; Misner'72; Starobinsky’73 Rotating Black Hole Ergoregion

  9. Penrose Process Penrose’69; Misner'72; Starobinsky’73 Rotating Black Hole Ergoregion Extracts angular momentum and mass from a spinning black hole

  10. Black Hole Bomb Press & Teukolsky 1972 Photons reflected back and forth from the black hole and through the ergoregion

  11. Black Hole Bomb Press & Teukolsky 1972 Photons reflected back and forth from the black hole and through the ergoregion

  12. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Superradiance for a massive boson Press & Teukolsky’72 Damour et al.’76; Gaina et al.’78; Detweiler’80; Zouros & Eardley’79; Particle Compton wavelength comparable to the size of a black hole m ∼ 10 − 10 ÷ 10 − 20 eV

  13. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Superradiance for a massive boson Press & Teukolsky’72 Damour et al.’76; Gaina et al.’78; Detweiler’80; Zouros & Eardley’79; Particle Compton wavelength comparable to the size of a black hole m ∼ 10 − 10 ÷ 10 − 20 eV

  14. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Superradiance for a massive boson Press & Teukolsky’72 Damour et al.’76; Gaina et al.’78; Detweiler’80; Zouros & Eardley’79; Particle Compton wavelength comparable to the size of a black hole m ∼ 10 − 10 ÷ 10 − 20 eV

  15. <latexit sha1_base64="ub/zegYSiaiCN4rp7eBFrJLOV8=">AB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkqigh6rXjxWaj+gDWGz2bRLN5uwuxFq6C/x4kERr/4Ub/4bt20OWn0w8Hhvhpl5QcqZ0o7zZVWVtfWN8qbla3tnd2qvbfUkmCW2ThCeyF2BFORO0rZnmtJdKiuOA024wvpn53QcqFUvEvZ6k1IvxULCIEayN5NvVq7Dlnw0i6lCLd/17ZpTd+ZAf4lbkBoUaPr25yBMSBZToQnHSvVdJ9VejqVmhNpZApmIyxkPaN1Rgs8jL54dP0bFRQhQl0pTQaK7+nMhxrNQkDkxnjPVILXsz8T+vn+no0suZSDNBVksijKOdIJmKaCQSUo0nxiCiWTmVkRGWGKiTVYVE4K7/PJf0jmtu07dvTuvNa6LOMpwCEdwAi5cQANuoQltIJDBE7zAq/VoPVtv1vuitWQVMwfwC9bHN3aKkw=</latexit> <latexit sha1_base64="ub/zegYSiaiCN4rp7eBFrJLOV8=">AB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkqigh6rXjxWaj+gDWGz2bRLN5uwuxFq6C/x4kERr/4Ub/4bt20OWn0w8Hhvhpl5QcqZ0o7zZVWVtfWN8qbla3tnd2qvbfUkmCW2ThCeyF2BFORO0rZnmtJdKiuOA024wvpn53QcqFUvEvZ6k1IvxULCIEayN5NvVq7Dlnw0i6lCLd/17ZpTd+ZAf4lbkBoUaPr25yBMSBZToQnHSvVdJ9VejqVmhNpZApmIyxkPaN1Rgs8jL54dP0bFRQhQl0pTQaK7+nMhxrNQkDkxnjPVILXsz8T+vn+no0suZSDNBVksijKOdIJmKaCQSUo0nxiCiWTmVkRGWGKiTVYVE4K7/PJf0jmtu07dvTuvNa6LOMpwCEdwAi5cQANuoQltIJDBE7zAq/VoPVtv1vuitWQVMwfwC9bHN3aKkw=</latexit> <latexit sha1_base64="ub/zegYSiaiCN4rp7eBFrJLOV8=">AB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkqigh6rXjxWaj+gDWGz2bRLN5uwuxFq6C/x4kERr/4Ub/4bt20OWn0w8Hhvhpl5QcqZ0o7zZVWVtfWN8qbla3tnd2qvbfUkmCW2ThCeyF2BFORO0rZnmtJdKiuOA024wvpn53QcqFUvEvZ6k1IvxULCIEayN5NvVq7Dlnw0i6lCLd/17ZpTd+ZAf4lbkBoUaPr25yBMSBZToQnHSvVdJ9VejqVmhNpZApmIyxkPaN1Rgs8jL54dP0bFRQhQl0pTQaK7+nMhxrNQkDkxnjPVILXsz8T+vn+no0suZSDNBVksijKOdIJmKaCQSUo0nxiCiWTmVkRGWGKiTVYVE4K7/PJf0jmtu07dvTuvNa6LOMpwCEdwAi5cQANuoQltIJDBE7zAq/VoPVtv1vuitWQVMwfwC9bHN3aKkw=</latexit> <latexit sha1_base64="ub/zegYSiaiCN4rp7eBFrJLOV8=">AB+HicbVBNS8NAEJ3Ur1o/GvXoZbEInkqigh6rXjxWaj+gDWGz2bRLN5uwuxFq6C/x4kERr/4Ub/4bt20OWn0w8Hhvhpl5QcqZ0o7zZVWVtfWN8qbla3tnd2qvbfUkmCW2ThCeyF2BFORO0rZnmtJdKiuOA024wvpn53QcqFUvEvZ6k1IvxULCIEayN5NvVq7Dlnw0i6lCLd/17ZpTd+ZAf4lbkBoUaPr25yBMSBZToQnHSvVdJ9VejqVmhNpZApmIyxkPaN1Rgs8jL54dP0bFRQhQl0pTQaK7+nMhxrNQkDkxnjPVILXsz8T+vn+no0suZSDNBVksijKOdIJmKaCQSUo0nxiCiWTmVkRGWGKiTVYVE4K7/PJf0jmtu07dvTuvNa6LOMpwCEdwAi5cQANuoQltIJDBE7zAq/VoPVtv1vuitWQVMwfwC9bHN3aKkw=</latexit> Standard Model Landscape Arkani-Hamed, SD, Nicolis, Villadoro hep-th/0703067 What are the vacua in the Standard Model? Radion Potential classical contribution from Λ V ( R ) Casimir from ν e,µ, τ R max = 14 µ m ∼ Λ − 1 / 4 R 50 µm Casimir from R 0 ∼ (2 π m ν ) − 1 g, γ 2 π R 0 ≈ 20 µ m AdS 3 × S 1 l AdS ≈ 3 . 7 · 10 27 c m vacuum with Trichamoeba sp. typical habitant of the SM Landscape

  16. Many More Vacua Extremal Reissner-Nordstrom black holes connect between flat and vacua AdS 2 × S 2 dr 2 ds 2 = (1 − r h r ) 2 dt 2 − r ) 2 − r 2 d Ω 2 (1 − r h 2

Recommend


More recommend