Spectral super-resolution DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/OBDA_fall17/index.html Carlos Fernandez-Granda
Spectral super-resolution Aim: Estimate frequencies of multisinusoidal signal s � g ( t ) := � c [ j ] exp ( − i 2 π f j t ) j = 1 where f 1 , f 2 , . . . , f s ∈ [ − 1 / 2 , 1 / 2 ] from n of samples g ( − ( n − 1 ) / 2 ) , g ( − ( n − 1 ) / 2 + 1 ) , . . . , g (( n − 1 ) / 2 )
Spectral super-resolution Signal Data
Dirac measure It’s a measure, not a function! � 1 if τ ∈ S � δ [ τ ] ( d u ) = 0 otherwise S For any function h we have � h ( τ ) if τ ∈ S � h ( u ) δ [ τ ] ( d u ) = 0 otherwise S
Spectral super-resolution Aim: Estimating the measure s � � µ g := c [ j ] δ [ f j ] j = 1 from n Fourier coefficients � 1 / 2 h k ( u ) µ g ( d u ) − 1 / 2
Spectral super-resolution Aim: Estimating the measure s � � µ g := c [ j ] δ [ f j ] j = 1 from n Fourier coefficients � 1 / 2 � 1 / 2 s � h k ( u ) µ g ( d u ) = c [ j ] � h k ( u ) δ [ f j ] ( d u ) − 1 / 2 − 1 / 2 j = 1
Spectral super-resolution Aim: Estimating the measure s � � µ g := c [ j ] δ [ f j ] j = 1 from n Fourier coefficients � 1 / 2 � 1 / 2 s � h k ( u ) µ g ( d u ) = � c [ j ] h k ( u ) δ [ f j ] ( d u ) − 1 / 2 − 1 / 2 j = 1 s � = � c [ j ] exp ( − i 2 π kf j ) j = 1
Spectral super-resolution Aim: Estimating the measure s � � µ g := c [ j ] δ [ f j ] j = 1 from n Fourier coefficients � 1 / 2 � 1 / 2 s � h k ( u ) µ g ( d u ) = c [ j ] � h k ( u ) δ [ f j ] ( d u ) − 1 / 2 − 1 / 2 j = 1 s � = � c [ j ] exp ( − i 2 π kf j ) j = 1 − n − 1 ≤ k ≤ n − 1 = g ( k ) , 2 2
The periodogram Prony’s method Subspace methods
Periodogram y ∈ C n is The periodogram of � n − 1 2 � P � y ( u ) := � y [ k ] h k ( u ) k = − n − 1 2
Spectrum of Dirichlet kernel D − k c k c
Dirichlet kernel d 2 k c + 1 1 1 − 2 k c +1 2 k c +1 − 1 / 2 1 / 2
Periodogram as a convolution The periodogram of g ( − ( n − 1 ) / 2 ) , g ( − ( n − 1 ) / 2 + 1 ) , . . . , g (( n − 1 ) / 2 ) equals s � P g ( u ) = � c [ j ] d [ f j ] ( u ) j = 1
Time shift The τ -shifted version of a function f ∈ L 2 [ − 1 / 2 , 1 / 2 ] is f [ τ ] ( t ) := f ( t − τ ) where the shift is circular (it wraps around) For any shift τ F [ τ ] [ k ] = exp ( − i 2 π k τ ) F [ k ]
Proof The Fourier coefficients of the shifted Dirichlet kernel equal � exp ( − i 2 π kf ) if | k | ≤ ( n − 1 ) / 2 D [ f ] [ k ] := 0 otherwise
Proof s � c [ j ] exp ( − i 2 π kf j ) g ( k ) := � j = 1
Proof s � c [ j ] exp ( − i 2 π kf j ) g ( k ) := � j = 1 s � = � c [ j ] D [ f j ] [ k ] j = 1
Proof s � c [ j ] exp ( − i 2 π kf j ) g ( k ) := � j = 1 s � = c [ j ] D [ f j ] [ k ] � j = 1 n − 1 2 � P g ( u ) = g ( k ) h k ( u ) k = − n − 1 2
Proof s � c [ j ] exp ( − i 2 π kf j ) g ( k ) := � j = 1 s � = � c [ j ] D [ f j ] [ k ] j = 1 n − 1 2 � P g ( u ) = g ( k ) h k ( u ) k = − n − 1 2 n − 1 s 2 � � = � c [ j ] D [ f j ] [ k ] h k ( u ) j = 1 k = − n − 1 2
Proof s � c [ j ] exp ( − i 2 π kf j ) g ( k ) := � j = 1 s � = � c [ j ] D [ f j ] [ k ] j = 1 n − 1 2 � P g ( u ) = g ( k ) h k ( u ) k = − n − 1 2 n − 1 s 2 � � = c [ j ] � D [ f j ] [ k ] h k ( u ) j = 1 k = − n − 1 2 s � = � c [ j ] d [ f j ] ( u ) j = 1
Periodogram as a convolution Periodogram Data 0 5 10
Periodogram as a convolution Periodogram Data 0 5 10 15 20
Periodogram as a convolution Periodogram Data 0 10 20 30 40
Periodogram as a convolution Periodogram Data 0 10 20 30 40 50
Problem Signal (magnitude) Periodogram
Windowed periodogram y ∈ C n is The windowed periodogram of � n − 1 2 � y ( u ) := W [ k ] g ( k ) h k ( u ) . P w ,� k = − n − 1 2 � n − 1 − n − 1 � � � W , . . . , W are the Fourier coefficients of a 2 2 window function
Windowing Data Window function Windowed data
Windowed periodogram n − 1 2 � y ( u ) = W [ k ] g ( k ) h k ( u ) P w ,� k = − n − 1 2
Windowed periodogram n − 1 2 � y ( u ) = W [ k ] g ( k ) h k ( u ) P w ,� k = − n − 1 2 n − 1 s 2 � � = � c [ j ] W [ k ] exp ( − i 2 π f j k ) h k ( u ) j = 1 k = − n − 1 2
Windowed periodogram n − 1 2 � y ( u ) = W [ k ] g ( k ) h k ( u ) P w ,� k = − n − 1 2 n − 1 s 2 � � = � c [ j ] W [ k ] exp ( − i 2 π f j k ) h k ( u ) j = 1 k = − n − 1 2 n − 1 s 2 � � = � c [ j ] W [ f j ] [ k ] h k ( u ) j = 1 k = − n − 1 2
Windowed periodogram n − 1 2 � y ( u ) = W [ k ] g ( k ) h k ( u ) P w ,� k = − n − 1 2 n − 1 s 2 � � = � c [ j ] W [ k ] exp ( − i 2 π f j k ) h k ( u ) j = 1 k = − n − 1 2 n − 1 s 2 � � = � c [ j ] W [ f j ] [ k ] h k ( u ) j = 1 k = − n − 1 2 s � = � c [ j ] w [ f j ] ( u ) j = 1
Problem Signal (magnitude) Periodogram
Windowed periodogram Signal (magnitude) Windowed periodogram
Periodogram ∆ = 1 . 2 ∆ = 2 . 4 n n
Gaussian periodogram ∆ = 1 . 2 ∆ = 2 . 4 n n
The periodogram Prony’s method Subspace methods
Prony polynomial Signal (magnitude) Prony polynomial (magnitude)
Prony polynomial Given any f 1 , f 2 , . . . , f s , there exists a nonzero complex polynomial of order s s � P [ k ] z k p ( z ) := k = 0 such that its s roots are equal to exp ( i 2 π f 1 ) , exp ( i 2 π f 2 ) , . . . , exp ( i 2 π f s )
Proof s � ( 1 − exp ( − i 2 π f j ) z ) p ( z ) := j = 1
Proof s � ( 1 − exp ( − i 2 π f j ) z ) p ( z ) := j = 1 is of order s, so has at most s roots
Proof s � ( 1 − exp ( − i 2 π f j ) z ) p ( z ) := j = 1 is of order s, so has at most s roots s � P [ k ] z k p ( z ) = 1 + k = 1
Proof s � ( 1 − exp ( − i 2 π f j ) z ) p ( z ) := j = 1 is of order s, so has at most s roots s � P [ k ] z k p ( z ) = 1 + k = 1 is nonzero since p ( 0 ) = 1
Proof s � ( 1 − exp ( − i 2 π f j ) z ) p ( z ) := j = 1 is of order s, so has at most s roots s � P [ k ] z k p ( z ) = 1 + k = 1 is nonzero since p ( 0 ) = 1 Reveals the frequencies p ( exp ( i 2 π f j )) = 0 1 ≤ j ≤ s
Prony system Let s − n − 1 ≤ k ≤ n − 1 � � c [ j ] exp ( − i 2 π kf j ) g ( k ) := 2 2 j = 1 For any integer b s � P [ l ] g [ l − b ] = 0 l = 0 The equation only involves the data as long as − n − 1 ≤ − b ≤ s − b ≤ n − 1 2 2
Proof s � P [ l ] g [ l − b ] l = 0
Proof � 1 / 2 s s � � P [ l ] g [ l − b ] = P [ l ] h l − b ( u ) µ g ( d u ) − 1 / 2 l = 0 l = 0
Proof � 1 / 2 s s � � P [ l ] g [ l − b ] = P [ l ] h l − b ( u ) µ g ( d u ) − 1 / 2 l = 0 l = 0 � 1 / 2 s � = exp ( i 2 π bu ) P [ l ] exp ( − i 2 π lu ) µ g ( d u ) − 1 / 2 l = 0
Proof � 1 / 2 s s � � P [ l ] g [ l − b ] = P [ l ] h l − b ( u ) µ g ( d u ) − 1 / 2 l = 0 l = 0 � 1 / 2 s � = exp ( i 2 π bu ) P [ l ] exp ( − i 2 π lu ) µ g ( d u ) − 1 / 2 l = 0 � 1 / 2 = exp ( i 2 π bu ) p ( exp ( − i 2 π u )) µ g ( d u ) − 1 / 2
Proof � 1 / 2 s s � � P [ l ] g [ l − b ] = P [ l ] h l − b ( u ) µ g ( d u ) − 1 / 2 l = 0 l = 0 � 1 / 2 s � = exp ( i 2 π bu ) P [ l ] exp ( − i 2 π lu ) µ g ( d u ) − 1 / 2 l = 0 � 1 / 2 = exp ( i 2 π bu ) p ( exp ( − i 2 π u )) µ g ( d u ) − 1 / 2 s � � c [ j ] exp ( i 2 π bf j ) p ( exp ( − i 2 π f j )) = j = 1
Proof � 1 / 2 s s � � P [ l ] g [ l − b ] = P [ l ] h l − b ( u ) µ g ( d u ) − 1 / 2 l = 0 l = 0 � 1 / 2 s � = exp ( i 2 π bu ) P [ l ] exp ( − i 2 π lu ) µ g ( d u ) − 1 / 2 l = 0 � 1 / 2 = exp ( i 2 π bu ) p ( exp ( − i 2 π u )) µ g ( d u ) − 1 / 2 s � � c [ j ] exp ( i 2 π bf j ) p ( exp ( − i 2 π f j )) = j = 1 = 0
Prony’s method 1. Solve the system of equations g ( 1 ) g ( 2 ) · · · g ( 0 ) g ( s ) g ( 0 ) g ( 1 ) · · · g ( s − 1 ) g ( − 1 ) � P = − · · · · · · · · · · · · · · · g ( − s + 2 ) g ( − s + 3 ) · · · g ( 1 ) g ( − s + 1 ) 2. Compute the roots z 1 , . . . , z s of the polynomial s � � P [ k ] z k p ( z ) := 1 + k = 1 3. For every root on the unit circle z j = exp ( i 2 πτ ) include τ in the set of estimated frequencies
Without noise it works! Signal (magnitude) Prony polynomial (magnitude)
Recommend
More recommend