black holes in the
play

Black holes in the 1/D expansion Roberto Emparan ICREA & - PowerPoint PPT Presentation

Black holes in the 1/D expansion Roberto Emparan ICREA & UBarcelona w/ Tetsuya Shiromizu, Ryotaku Suzuki, Kentaro Tanabe, Takahiro Tanaka = = Black holes are very important objects in GR


  1. Black holes in the 1/D expansion Roberto Emparan ICREA & UBarcelona w/ Tetsuya Shiromizu, Ryotaku Suzuki, Kentaro Tanabe, Takahiro Tanaka

  2. 𝑺 𝝂𝝃 = 𝟏 𝑺 𝝂𝝃 = βˆ’πš³π’‰ 𝝂𝝃

  3. Black holes are very important objects in GR , but they do not appear in the fundamental formulation of the theory They’re non -linear, extended field configurations with complicated dynamics

  4. Strings are very important in YM theories, but they do not appear in the fundamental formulation of the theory They’re non -linear, extended field configurations with complicated dynamics

  5. Strings become fundamental objects in the large N limit of SU( N ) YM In this limit, YM can be reformulated using worldsheet variables Strings are still extended objects, but their dynamics simplifies drastically

  6. Is there a limit of GR in which Black Hole dynamics simplifies a lot? Yes, the limit of large D any other parameter?

  7. Is there a limit in which GR can be formulated with black holes as the fundamental (extended) objects? Maybe, the limit of large D

  8. BH in D dimensions 𝑒𝑠 2 𝑒𝑑 2 = βˆ’ 1 βˆ’ 𝑠 πΈβˆ’3 𝑒𝑒 2 + 0 πΈβˆ’3 + 𝑠 2 𝑒Ω πΈβˆ’2 1 βˆ’ 𝑠 𝑠 0 𝑠

  9. Localization of interactions Large potential gradient: Ξ¦ 𝑠 Ξ¦ 𝑠 ∼ 𝑠 πΈβˆ’3 0 𝑠 𝐸 𝛼Φ ∼ 𝐸/𝑠 0 𝑠 0 𝑠 𝑠 0 ⟹ Hierarchy of scales ⟷ 𝑠 0 𝐸 𝑠 0 𝐸 β‰ͺ 𝑠 0

  10. Large-D β‡’ neat separation bh/background ∼ 𝑠 0 /𝐸 ∼ 𝑠 0 𝐸 = 4 𝐸 ≫ 4

  11. 𝑠 ≫ 𝑠 𝑠 0 πΈβˆ’3 0 β‡’ β†’ 0 𝐸 𝑠 Flat space β€œ Far ” region

  12. 𝑠 0 πΈβˆ’3 0 ≲ 𝑠 0 = 𝒫 1 ⟺ 𝑠 βˆ’ 𝑠 𝑠 𝐸 𝑠 βˆ’ 𝑠 0 ∼ 𝑠 0 𝐸 𝑠 β‰ͺ 𝑠 0 : β€œ Near-horizon ” region

  13. Near-horizon geometry 𝑒𝑠 2 𝑒𝑑 2 = βˆ’ 1 βˆ’ 𝑠 πΈβˆ’3 𝑒𝑒 2 + 0 πΈβˆ’3 + 𝑠 2 𝑒Ω πΈβˆ’2 1 βˆ’ 𝑠 𝑠 0 𝑠 πΈβˆ’3 𝑠 = cosh 2 𝜍 𝑠 0 finite 𝑒 π‘œπ‘“π‘π‘  = 𝐸 as 𝐸 β†’ ∞ 𝑒 2𝑠 0

  14. Near-horizon geometry 2d string bh 2 2 β†’ 4𝑠 βˆ’ tanh 2 𝜍 𝑒𝑒 π‘œπ‘“π‘π‘  0 2 + π‘’πœ 2 𝑒𝑑 π‘œβ„Ž 𝐸 2 2 (cosh 𝜍) 4/𝐸 𝑒Ω πΈβˆ’2 2 + 𝑠 0 Soda 1993 2d dilaton Grumiller et al 2002 RE+Grumiller+Tanabe 2013 β€˜string length’ β„“ 𝑑 ∼ 𝑠0 𝐸

  15. Near-horizon universality 2d string bh = near-horizon geometry of all neutral non-extremal bhs rotation = local boost (along horizon) cosmo const = 2d bh mass-shift

  16. Does this help understand/solve bh dynamics?

  17. Quasinormal modes capture interesting perturbative dynamics: -possible instabilities -hydrodynamic behavior but, w/out a small parameter, these modes are not easily distinguished from other more boring quasinormal modes

  18. Large D introduces a generic small parameter It isolates the β€˜interesting’ quasinormal modes from the β€˜boring’ modes

  19. The distinction comes from whether the modes are normalizable or non-normalizable in the near-horizon region

  20. β€˜Boring’ modes Non-normalizable in near-zone Not decoupled from the far zone High frequency: πœ• ∼ 𝐸/𝑠 0 Universal spectrum: only sensitive to bh radius Almost featureless oscillations of a hole in flat space

  21. β€˜Interesting’ modes Normalizable in near zone Decoupled from the far zone Low frequency: πœ• ∼ 𝐸 0 /𝑠 0 Sensitive to bh geometry beyond the leading order Capture instabilities and hydro Efficient calculation to high orders in 1 𝐸

  22. Black hole perturbations Quasinormal modes of Schw-(A)dS bhs Gregory-Laflamme instability Ultraspinning instability All solved analytically

  23. How accurate? 1 Small expansion parameter: πΈβˆ’3 not quite good for 𝐸 = 4 … 1 But it seems to be 2(πΈβˆ’3) not so bad in 𝐸 = 4 , if we can compute to higher order 1 (in AdS: 2(πΈβˆ’1) )

  24. How accurate? 1 Small expansion parameter: πΈβˆ’3 not quite good for 𝐸 = 4 … 1 But it seems to be πŸ‘(πΈβˆ’3) not so bad in 𝐸 = 4 , if we can compute higher orders 1 (in AdS: 2(πΈβˆ’1) )

  25. Quite accurate Quasinormal frequency in 𝐸 = 4 (vector-type) βˆ’Im πœ•π‘  βˆ’ 4D calculation 0 βˆ’ Large D @ D=4 β„“ (angular momentum) 1 𝐸 3 yields 6% accuracy in 𝐸 = 4 Calculation up to 1 6% = 4 𝐸=4 2 𝐸 βˆ’ 3

  26. Fully non-linear GR @ large D

  27. Replace bh ⟢ Surface in background What’s the dynamics of this surface? 𝐸 β†’ ∞ 𝐸 ≫ 4

  28. Large D Effective Theory Solve near-horizon equations β†’ Effective theory for the β€˜slow’ decoupling modes

  29. Gradient hierarchy βŠ₯ Horizon: πœ– 𝜍 ∼ 𝐸 βˆ₯ Horizon: πœ– 𝑨 ∼ 1 𝑨 𝜍 Ξ£ πΈβˆ’3

  30. Static geometry 𝑒𝑑 2 = 𝑂 2 𝑨 π‘’πœ 2 𝐸 2 + 𝑕 ΩΩ 𝜍, 𝑨 𝑒Σ πΈβˆ’3 +𝑕 𝑒𝑒 𝜍, 𝑨 𝑒𝑒 2 + 𝑕 𝑨𝑨 𝜍, 𝑨 𝑒𝑨 2 𝑨 𝜍 Ξ£ πΈβˆ’3

  31. Einstein β€˜momentum - constraint’ in 𝜍 : βˆ’π‘• 𝑒𝑒 𝐿 = 2πœ† πœ† =surface gravity 𝐿 = mean curvature of β€˜horizon surface’ 𝑒𝑑 2 β„Ž = 𝑕 𝑒𝑒 𝑨 𝑒𝑒 2 + 𝑒𝑨 2 + β„› 2 𝑨 𝑒Σ πΈβˆ’3 embedded in background β„›(𝑨) Ξ£ πΈβˆ’3

  32. Large D static black holes: Soap-film equation (redshifted) βˆ’π‘• 𝑒𝑒 𝐿 = 2πœ†

  33. Some applications

  34. Soap bubble in Minkowski = Schw BH βˆ’π‘• 𝑒𝑒 𝐿 = const β‡’ β„› β€²2 + β„› 2 = 1 β‡’ β„› 𝑨 = sin 𝑨 β„›(𝑨) 𝑨 𝑇 πΈβˆ’3 𝑇 πΈβˆ’2

  35. Black droplets Black hole at boundary of AdS AdS boundary dual to CFT in BH background 𝑨 AdS bulk Numerical solution: Figueras+Lucietti+Wiseman

  36. Our numerical code zmin 0.000001; zmax 0.67; r0 .5; r z 2 z2 1 r z 2 1 z NDSolve r' z ,r zmin r0 ,r, z,zmin,zmax 1 z2 r z

  37. Black droplets

  38. Non-uniform black strings 𝑨 β„› 𝑨 Numerical solution: Wiseman

  39. Non-uniform black strings 𝑨 β„› 𝑨 = 1 + 2𝒬(𝑨) 𝐸 requires NLO ∼ 1/ 𝐸 𝐿 = const ⟹ 𝒬 β€²β€² + 𝒬 + 𝒬 β€²2 = const

  40. Non-uniform black strings β„› 𝑨 = 1 + 2𝒬(𝑨) 𝒬 𝑨 𝐸 𝑨

  41. At NLO there appears a critical dimension 𝐸 βˆ— for black strings (from 2nd order to 1st order) at 𝐸 βˆ— = 13 Suzuki+Tanabe Numerical value 𝐸 βˆ— ≃ 13.5 E Sorkin 2004

  42. Formulation for stationary black holes Ultraspinning bifurcations of (single-spin) Myers-Perry black holes at 𝑏 = 3, 5, 7, … 𝑠 + 𝑏 𝑠 + = 1.77, 2.27, 2.72 … Numerical (D=8): Dias et al

  43. Extensions Charged black holes RE+Di Dato Time-evolving black holes Minwalla et al

  44. Limitations 1/D expansion breaks down when πœ– 𝑨 ∼ 𝐸 β€’ Highly non-uniform black strings 1/𝐸 1/𝐸 β€’ AdS black funnels

  45. Long wavelength, slow evolution πœ– 𝑒,𝑨 ∼ 𝐸 0 can lead to large gradients, fast evolution πœ– 𝑒,𝑨 ∼ 𝐸 if so, breakdown of expansion

  46. Conclusions

  47. 1/D expansion of GR is very efficient at capturing dynamics of horizons Reformulation of a sector of GR: bh’s in terms of (membrane -like) surfaces decoupled from bulk (grav waves)

  48. 1/D: it works (not obvious beforehand!)

  49. End

  50. Spherical reduction of Einstein-Hilbert 2 2 = 4𝑠 2 𝑓 βˆ’4Ξ¦ 𝑦 2 𝑒𝑦 𝜈 𝑒𝑦 πœ‰ + 𝑠 0 πΈβˆ’2 𝑒Ω πΈβˆ’2 2 𝑒𝑑 π‘œβ„Ž βˆ’π‘• πœˆπœ‰ 0 𝐸 2 2 (𝑦) , Ξ¦ 𝑦 𝑕 πœˆπœ‰ 𝐽 = ∫ 𝑒 2 𝑦 βˆ’π‘•π‘“ βˆ’2Ξ¦ 𝑆 + 4 𝐸 βˆ’ 3 𝐸 βˆ’ 2 𝛼Φ 2 + 𝐸 βˆ’ 3 𝐸 βˆ’ 2 4Ξ¦ (πΈβˆ’2) 𝑓 2 𝑠 0 ⟹ 2d dilaton gravity

  51. Spherical reduction of Einstein-Hilbert 2 2 = 4𝑠 2 𝑓 βˆ’ 4Ξ¦ 𝑦 2 𝑒𝑦 𝜈 𝑒𝑦 πœ‰ + 𝑠 0 πΈβˆ’2 𝑒Ω πΈβˆ’2 2 𝑒𝑑 π‘œβ„Ž βˆ’π‘• πœˆπœ‰ 0 𝐸 2 𝐸 β†’ ∞ Soda, Grumiller et al 𝐽 β†’ ∫ 𝑒 2 𝑦 βˆ’π‘•π‘“ βˆ’2Ξ¦ 𝑆 + 4 𝛼Φ 2 + 𝐸 2 2 𝑠 0 ⟹ 2d string gravity β„“ π‘‘π‘’π‘ π‘—π‘œπ‘• ∼ 2𝑠 0 𝐸

  52. Quantum effects? Dimensionful scale: 1 𝑀 π‘„π‘šπ‘π‘œπ‘‘π‘™ = 𝐻ℏ πΈβˆ’2 𝑠 0 Quantum effects governed by 𝑀 π‘„π‘šπ‘π‘œπ‘‘π‘™

  53. 𝑠 0 𝑀 π‘„π‘šπ‘π‘œπ‘‘π‘™ ∼ 𝐸 0 the bh is fully quantum: If Entropy β†’ 0 Temperature β†’ ∞ Evaporation lifetime β†’ 0 But other scalings are possible

  54. 𝑠 0 Scaling 𝑀 π‘„π‘šπ‘π‘œπ‘‘π‘™ with D: how large are the black holes, which quantum effects are finite at large D 0 𝑀 π‘„π‘šπ‘π‘œπ‘‘π‘™ ∼ 𝐸 1 2 𝑠 Finite entropy: 𝑠 0 𝑀 π‘„π‘šπ‘π‘œπ‘‘π‘™ ∼ 𝐸 Finite temperature: 0 𝑀 π‘„π‘šπ‘π‘œπ‘‘π‘™ ∼ 𝐸 2 𝑠 Finite energy of Hawking radn:

  55. Black hole perturbations Given the general master equation, it’s a straightforward perturbative analysis Leading order is simple and universal 1 𝐸 (solving in 2D string bh): static modes πœ• ∼ 𝑠 0 β†’ 0 𝐸 Higher order perturbations are not universal, but organized by simple leading order solution

Recommend


More recommend