Due Giorni di Algebra Lineare Numerica www.dima.unige.it/ ∼ dibenede/2gg/home.html Genova, 16–17 Febbraio 2012 Bernoulli, Ramanujan, Toeplitz e le matrici triangolari Carmine Di Fiore, Francesco Tudisco, Paolo Zellini Speaker: Carmine Di Fiore By using one of the definitions of the Bernoulli numbers, we observe that they solve particular odd and even lower triangular Toeplitz (l.t.T.) systems. In a paper Ramanujan writes down a sparse lower triangular system solved by Bernoulli numbers; we observe that such system is equivalent to a sparse l.t.T. system. The attempt to obtain the sparse l.t.T. Ramanujan system from the l.t.T. odd and even systems, leads us to study efficient methods for solving generic l.t.T. systems. 1
Bernoulli numbers are the rational numbers satisfying the following identity + ∞ + ∞ t B n (0) t n = − 1 B 2 k (0) � � (2 k )! t 2 k . e t − 1 = 2 t + n ! n =0 k =0 So, they satisfy the following linear equations � j [ j − 1 2 ] � − 1 � 2 j + B 2 k (0) = 0 , j = 2 , 3 , 4 , . . . , 2 k k =0 � 2 � 0 � 4 � 4 � � B 0 (0) 1 0 2 B 2 (0) 2 � 6 � 6 � 6 � � � j even : B 4 (0) = 3 , 0 2 4 B 6 (0) 4 � 8 � 8 � 8 � 8 � � � � · · 0 2 4 6 · · · · · � 1 � 0 � 3 � 3 � � B 0 (0) 1 0 2 B 2 (0) 3 / 2 � 5 � 5 � 5 � � � B 4 (0) 5 / 2 j odd : = . 0 2 4 B 6 (0) 7 / 2 � 7 � 7 � 7 � 7 � � � � · · 0 2 4 6 · · · · · In other words, the Bernoulli numbers can be obtained by solving (by forward substitution) a lower triangular linear system (one of the above two). For example, by forward solving the first system, I have obtained the first Bernoulli numbers: B 0 (0) = 1 , B 2 (0) = 1 6 , B 4 (0) = − 1 30 , B 6 (0) = 1 42 , B 8 (0) = − 1 30 , B 10 (0) = 5 66 , B 12 (0) = − 691 2730 , B 14 (0) = 7 6 ≈ 1 . 16 , B 16 (0) = − 47021 6630 ≈ − 7 . 09 , . . . Bernoulli numbers appear in the Euler-Maclaurin summation formula, and, in particular, in the expression of the error of the trapezoidal quadrature rule as sum of even powers of the integration step h (the expression that justifies the efficiency of the Romberg-Trapezoidal quadrature method). Bernoulli numbers are also often involved when studying the Riemann-Zeta function. For example, well known is the following Euler formula: + ∞ ζ (2 n ) = 4 n | B 2 n (0) | π 2 n 1 � ζ ( s ) = k s , , n ∈ 1 , 2 , 3 , . . . 2(2 n )! k =1 (see also [Riemann’s Zeta Function, H. M. Edwards, 1974]). The Ramanujan’s paper we refer in the following is entitled “Some properties of Bernoulli’s numbers” (1911). 2
The coefficient matrices of the previous two lower triangular linear systems are submatrices of the matrix X displayed here below: � 0 � 0 � 1 � 1 � � 1 0 � 2 � 2 � 2 � � � 1 1 2 1 1 0 � 3 � 3 � 3 � 3 � � � � 1 2 1 X = 1 3 = 1 3 3 1 . 0 2 � 4 � 4 � 4 � 4 � 4 � � � � � 1 4 6 4 1 1 3 4 1 5 10 10 5 1 0 2 � 5 � 5 � 5 � 5 � 5 � 5 � � � � � � · · · · · · · 1 3 5 0 2 4 � 6 � 6 � 6 � 6 � 6 � 6 � 6 � � � � � � � 1 3 5 6 0 2 4 · · · · · · · · One can easily observe that X can be rewritten as a power series: 0 1 0 + ∞ 1 2 0 � k ! Y k , X = Y = 3 0 k =0 4 0 · · � � 1 1 i − 1 ( i − j )![ Y i − j ] ij = Proof: [ X ] ij = ( i − j )! j · · · ( i − 2)( i − 1) = , 1 ≤ j ≤ i ≤ n. j − 1 This remark is the starting point in order to show that � 2 � 0 � 4 � 4 � � 2 12 0 2 + ∞ � 6 � 6 � 6 1 (2 k + 2)! φ k = � � � � 30 , 56 0 2 4 k =0 � 8 � 8 � 8 � 8 � � � � · 0 2 4 6 · · · · · � 1 � 0 � 3 � 3 � � 1 3 0 2 + ∞ � 5 � 5 � 5 1 (2 k + 1)! φ k = � � � � 5 , 7 0 2 4 k =0 � 7 � 7 � 7 � 7 � � � � · 0 2 4 6 · · · · · 0 2 0 12 0 where φ = , 2 = 1 · 2, 12 = 3 · 4, 30 = 5 · 6, . . . . 30 0 56 0 · · 3
It follows that the linear systems solved by the Bernoulli numbers, can be rewritten as follows, in terms of the matrix φ : 1 / 2 1 / 2 B 0 (0) 2 / 12 1 / 6 B 2 (0) + ∞ 1 3 / 30 1 / 10 � (2 k + 2)! φ k =: q e , 2 B 4 (0) = 2 = 2 (almosteven) 4 / 56 1 / 14 B 6 (0) k =0 5 / 90 1 / 18 · · · 1 / 1 1 B 0 (0) (3 / 2) / 3 1 / 2 B 2 (0) + ∞ 1 � (5 / 2) / 5 1 / 2 (2 k + 1)! φ k =: q o . B 4 (0) = = (almostodd) (7 / 2) / 7 1 / 2 B 6 (0) k =0 (9 / 2) / 9 1 / 2 · · · Now we transform φ into a Toeplitz matrix. We have that 0 d − 1 d 1 1 2 0 d − 1 d 2 2 12 0 DφD − 1 = d − 1 d 3 3 30 0 d − 1 d 4 4 56 0 · · · · 0 0 2 d 2 0 1 0 d 1 12 d 3 0 1 0 d 2 = = xZ, Z = , 30 d 4 0 1 0 d 3 56 d 5 1 0 0 d 4 · · · · iff d k = x k − 1 d 1 (2 k − 2)!, k = 1 , 2 , 3 , . . . , iff 1 x 2! x 2 4! D = d 1 D x , D x = . · x n − 1 (2 n − 2)! · We are ready to introduce the two even and odd lower triangular Toeplitz (l.t.T.) systems solved by the Bernoulli numbers. Set B 0 (0) B 2 (0) b = B 4 (0) · where the B 2 i (0), i = 0 , 1 , 2 , . . . , are the Bernoulli numbers. 4
Then the (almosteven) system � + ∞ (2 k +2)! φ k b = q e is equivalent to the system � + ∞ 1 (2 k +2)! ( D x φD − 1 1 x ) k ( D x b ) = k =0 2 k =0 2 D x q e , i.e. to the following l.t.T. even system: + ∞ x k � (2 k + 2)! Z k ( D x b ) = D x q e . 2 (even) k =0 Idem, the (almostodd) system � + ∞ (2 k +1)! φ k b = q o is equivalent to the system � + ∞ 1 (2 k +1)! ( D x φD − 1 1 x ) k ( D x b ) = k =0 k =0 D x q o , i.e. to the following l.t.T. odd system: + ∞ x k � (2 k + 1)! Z k ( D x b ) = D x q o . (odd) k =0 So, Bernoulli numbers can be computed by using a l.t.T. linear system solver . Such solver yields the following vector z : 1 · B 0 (0) x 2! B 2 (0) x 2 4! B 4 (0) · z = D x b = , x s (2 s )! B 2 s (0) · x n − 1 (2 n − 2)! B 2 n − 2 (0) · from which one obtains the vector of the first n Bernoulli numbers: { b } n = { D − 1 x z } n . Why x positive different from 1 may be useful? A suitable choice of x can make possible and more stable the computation via a l.t.T. solver of the entries z i of z for very large i . In fact, since √ i 2 i x i x i p i +1 x (2 i )! B 2 i (0) ≈ ( − 1) i +1 p i , p i = (2 i )!4 πi ( πe ) 2 i , → 4 π 2 , p i (2 i )! B 2 i (0) | → 0 (+ ∞ ) if x < 4 π 2 ( x > 4 π 2 ), both bad situations. Instead, for x ≈ 4 π 2 = we have that | x i 39 . 47 .. the sequence | x i (2 i )! B 2 i (0) | , i = 0 , 1 , 2 , . . . , should be lower and upper bounded. . . . | x 2 (4)! B 4 (0) | ≤ 1 iff | x | ≤ 26 . 84 | x 4 (8)! B 8 (0) | ≤ 1 iff | x | ≤ 33 . 2 | x 8 (16)! B 16 (0) | ≤ 1 iff | x | ≤ 36 . 2 (32)! B 32 (0) | ≤ 1 about iff | x | 16 ≤ (8 . 54) 32 | x 16 1 iff | x | ≤ 37 . 82 1293 4 · 7 . 09 (2 s )! 4 √ πs ( πe ) 2 s | ≤ 1 iff | x | s ≤ (2 s )! ( πe ) 2 s | x s (2 s )! B 2 s (0) | ≤ 1 about iff | x s s 2 s 4 √ πs . . . s 2 s More generally, the parameter x should be used to make more stable the l.t.T. solver. 5
Recommend
More recommend