bernoulli equations
play

Bernoulli Equations Bernd Schr oder logo1 Bernd Schr oder - PowerPoint PPT Presentation

Overview An Example Double Check Bernoulli Equations Bernd Schr oder logo1 Bernd Schr oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations Overview An Example Double Check What are Bernoulli


  1. Overview An Example Double Check Bernoulli Equations Bernd Schr¨ oder logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  2. Overview An Example Double Check What are Bernoulli Equations? logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  3. Overview An Example Double Check What are Bernoulli Equations? 1. A Bernoulli equation is of the form y ′ + p ( x ) y = q ( x ) y n , where n � = 0 , 1. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  4. Overview An Example Double Check What are Bernoulli Equations? 1. A Bernoulli equation is of the form y ′ + p ( x ) y = q ( x ) y n , where n � = 0 , 1. 2. Recognizing Bernoulli equations requires some pattern recognition. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  5. Overview An Example Double Check What are Bernoulli Equations? 1. A Bernoulli equation is of the form y ′ + p ( x ) y = q ( x ) y n , where n � = 0 , 1. 2. Recognizing Bernoulli equations requires some pattern recognition. 3. To solve a Bernoulli equation, we translate the equation into a linear equation. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  6. Overview An Example Double Check What are Bernoulli Equations? 1. A Bernoulli equation is of the form y ′ + p ( x ) y = q ( x ) y n , where n � = 0 , 1. 2. Recognizing Bernoulli equations requires some pattern recognition. 3. To solve a Bernoulli equation, we translate the equation into a linear equation. 1 1 − n turns the Bernoulli equation 3.1 The substitution y = v y ′ + p ( x ) y = q ( x ) y n into a linear first order equation for v , logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  7. Overview An Example Double Check What are Bernoulli Equations? 1. A Bernoulli equation is of the form y ′ + p ( x ) y = q ( x ) y n , where n � = 0 , 1. 2. Recognizing Bernoulli equations requires some pattern recognition. 3. To solve a Bernoulli equation, we translate the equation into a linear equation. 1 1 − n turns the Bernoulli equation 3.1 The substitution y = v y ′ + p ( x ) y = q ( x ) y n into a linear first order equation for v , 3.2 We can even write down the abstract form of the resulting linear first order equation, but it is simpler to remember the 1 1 − n , substitution y = v logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  8. Overview An Example Double Check What are Bernoulli Equations? 1. A Bernoulli equation is of the form y ′ + p ( x ) y = q ( x ) y n , where n � = 0 , 1. 2. Recognizing Bernoulli equations requires some pattern recognition. 3. To solve a Bernoulli equation, we translate the equation into a linear equation. 1 1 − n turns the Bernoulli equation 3.1 The substitution y = v y ′ + p ( x ) y = q ( x ) y n into a linear first order equation for v , 3.2 We can even write down the abstract form of the resulting linear first order equation, but it is simpler to remember the 1 1 − n , substitution y = v 3.3 After we solve the equation for v , we obtain y as the appropriate power of v . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  9. Overview An Example Double Check What are Bernoulli Equations? 1. A Bernoulli equation is of the form y ′ + p ( x ) y = q ( x ) y n , where n � = 0 , 1. 2. Recognizing Bernoulli equations requires some pattern recognition. 3. To solve a Bernoulli equation, we translate the equation into a linear equation. 1 1 − n turns the Bernoulli equation 3.1 The substitution y = v y ′ + p ( x ) y = q ( x ) y n into a linear first order equation for v , 3.2 We can even write down the abstract form of the resulting linear first order equation, but it is simpler to remember the 1 1 − n , substitution y = v 3.3 After we solve the equation for v , we obtain y as the appropriate power of v . That’s it. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  10. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  11. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  12. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. n = 5 , logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  13. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. 1 n = 5 , y = v 1 − 5 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  14. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. 1 − 5 = v − 1 1 n = 5 , y = v 4 , logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  15. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. 1 − 5 = v − 1 1 y ′ = n = 5 , y = v 4 , logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  16. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. y ′ = d 1 − 5 = v − 1 1 dxv − 1 n = 5 , y = v 4 , 4 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  17. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. y ′ = d − 1 1 − 5 = v − 1 1 dxv − 1 4 v − 5 4 v ′ n = 5 , y = v = 4 , 4 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  18. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. y ′ = d − 1 1 − 5 = v − 1 1 dxv − 1 4 v − 5 4 v ′ n = 5 , y = v = 4 , 4 y ′ + y x 2 y 5 = logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  19. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. y ′ = d − 1 1 − 5 = v − 1 1 dxv − 1 4 v − 5 4 v ′ n = 5 , y = v = 4 , 4 � 5 y ′ + y x 2 � v − 1 = 4 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  20. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. y ′ = d − 1 1 − 5 = v − 1 1 dxv − 1 4 v − 5 4 v ′ n = 5 , y = v = 4 , 4 � 5 y ′ + � v − 1 � x 2 � v − 1 = 4 4 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  21. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. y ′ = d − 1 1 − 5 = v − 1 1 dxv − 1 4 v − 5 4 v ′ n = 5 , y = v = 4 , 4 − 1 � 5 4 v − 5 4 v ′ + � v − 1 � x 2 � v − 1 = 4 4 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  22. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. y ′ = d − 1 1 − 5 = v − 1 1 dxv − 1 4 v − 5 4 v ′ n = 5 , y = v = 4 , 4 − 1 � 5 4 v − 5 4 v ′ + � v − 1 � x 2 � v − 1 = 4 4 − 1 4 v ′ + v − 1 4 v − 5 x 2 v − 5 = 4 4 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  23. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. y ′ = d − 1 1 − 5 = v − 1 1 dxv − 1 4 v − 5 4 v ′ n = 5 , y = v = 4 , 4 − 1 � 5 4 v − 5 4 v ′ + � v − 1 � x 2 � v − 1 = 4 4 − 1 4 v ′ + v − 1 4 v − 5 x 2 v − 5 = 4 4 − 1 4 v ′ + v x 2 = logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

  24. Overview An Example Double Check Solve the Initial Value Problem y ′ + y = x 2 y 5 , y ( 0 ) = 1. Reduction to a linear equation. y ′ = d − 1 1 − 5 = v − 1 1 dxv − 1 4 v − 5 4 v ′ n = 5 , y = v = 4 , 4 − 1 � 5 4 v − 5 4 v ′ + � v − 1 � x 2 � v − 1 = 4 4 − 1 4 v ′ + v − 1 4 v − 5 x 2 v − 5 = 4 4 − 1 4 v ′ + v x 2 = v ′ − 4 v − 4 x 2 = logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Bernoulli Equations

Recommend


More recommend