atomistic simulations of rare events using the
play

Atomistic simulations of rare events using the using the gentlest - PowerPoint PPT Presentation

Atomistic simulations of rare events Atomistic simulations of rare events using the using the gentlest ascent gentlest ascent dynamics dynamics Amit Samanta Rare events Amit Samanta GAD Ad-atom Applied and Computational Mathematics,


  1. Atomistic simulations of rare events Atomistic simulations of rare events using the using the gentlest ascent gentlest ascent dynamics dynamics Amit Samanta Rare events Amit Samanta GAD Ad-atom Applied and Computational Mathematics, diffusion Princeton University, Princeton, USA. Quasi- Newtonian Joint work with Conclusions Prof. Weinan E (Princeton), Xiang Zhou (Brown) 28 March 2012 Max Planck Institute for the Physics of Complex Systems Dresden, Germany

  2. A simple fact: Nature works on disparate time scales A direct manifestation: In nature, dynamics often proceed in the Atomistic simulations of form of rare events . rare events using the gentlest Focus : exploring a smooth energy surface for local minima, 1 ascent dynamics saddles starting from one initial point Amit Samanta Goal : set of dynamical equations that converge to saddle points 2 Rare events GAD Ad-atom diffusion Quasi- Newtonian Conclusions 1 J. P. Doye and D. J. Wales, J. Chem. Phys. (2002)

  3. A simple fact: Nature works on disparate time scales A direct manifestation: In nature, dynamics often proceed in the Atomistic simulations of form of rare events . rare events using the gentlest Focus : exploring a smooth energy surface for local minima, 1 ascent dynamics saddles starting from one initial point Amit Samanta Goal : set of dynamical equations that converge to saddle points 2 Rare events Challenge : 3 GAD problem nonlocal in nature but only local information available Ad-atom (1-form Fokker Planck, Witten Laplacian, etc not useful) diffusion follow minimum eigenmode close to saddle point - but can easily Quasi- become unstable (degenerate eigenvalues) Newtonian how to move out of basin of attraction - need better sampling Conclusions techniques no global convergence 1 J. P. Doye and D. J. Wales, J. Chem. Phys. (2002)

  4. A simple fact: Nature works on disparate time scales A direct manifestation: In nature, dynamics often proceed in the Atomistic simulations of form of rare events . rare events using the gentlest Focus : exploring a smooth energy surface for local minima, 1 ascent dynamics saddles starting from one initial point Amit Samanta Goal : set of dynamical equations that converge to saddle points 2 Rare events Challenge : 3 GAD problem nonlocal in nature but only local information available Ad-atom (1-form Fokker Planck, Witten Laplacian, etc not useful) diffusion follow minimum eigenmode close to saddle point - but can easily Quasi- become unstable (degenerate eigenvalues) Newtonian how to move out of basin of attraction - need better sampling Conclusions techniques no global convergence System dimensions : Lennard-Jones cluster ( LJ n ) 4 n = 4 atoms, 6 saddle points 1 1 J. P. Doye and D. J. Wales, J. Chem. Phys. (2002)

  5. A simple fact: Nature works on disparate time scales A direct manifestation: In nature, dynamics often proceed in the Atomistic simulations of form of rare events . rare events using the gentlest Focus : exploring a smooth energy surface for local minima, 1 ascent dynamics saddles starting from one initial point Amit Samanta Goal : set of dynamical equations that converge to saddle points 2 Rare events Challenge : 3 GAD problem nonlocal in nature but only local information available Ad-atom (1-form Fokker Planck, Witten Laplacian, etc not useful) diffusion follow minimum eigenmode close to saddle point - but can easily Quasi- become unstable (degenerate eigenvalues) Newtonian how to move out of basin of attraction - need better sampling Conclusions techniques no global convergence System dimensions : Lennard-Jones cluster ( LJ n ) 4 n = 4 atoms, 6 saddle points 1 n = 10 atoms, > 160 , 000 saddle points 1 1 J. P. Doye and D. J. Wales, J. Chem. Phys. (2002)

  6. Many transition events : Nanoindentation Atomistic simulations of rare events Made of very hard indenter material – Tungsten, using the Diamond, Boron nitride, R Aluminium nitride indenter gentlest ascent h Material whose dynamics hardness is to be substrate substrate measured Amit Samanta Measured quantities:- indentation load (P), indentation depth (h) Important Parameters:- indentation rate, indenter tip radius (R), elastic modulus, temperature Rare events GAD Ad-atom diffusion Quasi- Newtonian Conclusions W. Gerberich and W. Mook, Nat. Mat. (2005)

  7. Many transition events : Nanoindentation Atomistic simulations of rare events Made of very hard indenter material – Tungsten, using the Diamond, Boron nitride, R Aluminium nitride indenter gentlest ascent h Material whose dynamics hardness is to be substrate substrate measured Amit Samanta Measured quantities:- indentation load (P), indentation depth (h) Important Parameters:- indentation rate, indenter tip radius (R), elastic modulus, temperature Rare events GAD Ad-atom diffusion Quasi- Newtonian Conclusions W. Gerberich and W. Mook, Nat. Mat. (2005)

  8. Gentlest Ascent Dynamics H = ∇ 2 V ( x ) Idea: F = −∇ V ( x ) , Atomistic move along direction n , minimize along other dimensions simulations of rare events ˜ F = F ⊥ − F � , F � = ( F , n ) n , F ⊥ = F − F � using the gentlest ascent dynamics Amit Samanta Rare events GAD Ad-atom diffusion Quasi- Newtonian Conclusions W. E and X. Zhou, Nonlinearity (2011) A. Samanta and W. E, J Chem Phys (2012)

  9. Gentlest Ascent Dynamics H = ∇ 2 V ( x ) Idea: F = −∇ V ( x ) , Atomistic move along direction n , minimize along other dimensions simulations of rare events ˜ F = F ⊥ − F � , F � = ( F , n ) n , F ⊥ = F − F � using the gentlest Equations of motion: ascent dynamics x = F ( x ) − 2 ( F , n ) n ˙ Amit Samanta γ ˙ n = − H n + ( n , H n ) n Rare events Lemma :The stable fixed points of this dynamics are the index-1 saddle GAD points of V . (Local minima of V are saddle points of GAD) Ad-atom diffusion Quasi- Newtonian Conclusions W. E and X. Zhou, Nonlinearity (2011) A. Samanta and W. E, J Chem Phys (2012)

  10. Gentlest Ascent Dynamics H = ∇ 2 V ( x ) Idea: F = −∇ V ( x ) , Atomistic move along direction n , minimize along other dimensions simulations of rare events ˜ F = F ⊥ − F � , F � = ( F , n ) n , F ⊥ = F − F � using the gentlest Equations of motion: ascent dynamics x = F ( x ) − 2 ( F , n ) n ˙ Amit Samanta γ ˙ n = − H n + ( n , H n ) n Rare events Lemma :The stable fixed points of this dynamics are the index-1 saddle GAD points of V . (Local minima of V are saddle points of GAD) Ad-atom diffusion Quasi- Newtonian Conclusions shallow wells change in stability simple, amendable to mathematical analysis, can be extended to higher index saddles, non-gradient systems, efficient numerical schemes W. E and X. Zhou, Nonlinearity (2011) A. Samanta and W. E, J Chem Phys (2012)

  11. Convergence to One Saddle Point Atomistic simulations of x = F ( x ) − 2 ( F , n ) n ˙ rare events using the n = − H n + ( n , H n ) n gentlest ˙ ascent dynamics 2-dimensional example : V ( x , y ) = sin ( π x ) sin ( π y ) Amit Samanta Rare events GAD Ad-atom diffusion Quasi- Newtonian Conclusions

  12. Convergence to One Saddle Point Atomistic simulations of x = F ( x ) − 2 ( F , n ) n ˙ rare events using the n = − H n + ( n , H n ) n gentlest ˙ ascent dynamics 2-dimensional example : V ( x , y ) = sin ( π x ) sin ( π y ) Amit Samanta Rare events 2 GAD 0.8 1.5 Ad-atom randomly initialized 0.6 diffusion 1 0.4 direction vector 0.5 0.2 Quasi- Newtonian 0 0 time step important −0.2 Conclusions −0.5 −0.4 guess direction determines −1 −0.6 convergence −1.5 −0.8 −2 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

  13. Configuration Space Density Distribution Atomistic x = F ( x ) − 2 ( F , n ) n + σ ˙ ˙ w simulations of rare events using the γ ˙ n = − H n + ( n , H n ) n gentlest ascent dynamics 2-dimensional example : V ( x , y ) = sin ( π x ) sin ( π y ) Amit Samanta Rare events GAD Ad-atom diffusion Quasi- Newtonian Conclusions

  14. Configuration Space Density Distribution Atomistic x = F ( x ) − 2 ( F , n ) n + σ ˙ ˙ w simulations of rare events using the γ ˙ n = − H n + ( n , H n ) n gentlest ascent dynamics 2-dimensional example : V ( x , y ) = sin ( π x ) sin ( π y ) Amit Samanta 4 4 0.8 0.8 Rare events 3 3 0.6 0.6 GAD 2 2 0.4 0.4 Ad-atom 1 0.2 1 0.2 diffusion 0 0 0 0 Quasi- −1 −0.2 −1 −0.2 Newtonian −0.4 −2 −0.4 −2 Conclusions −0.6 −0.6 −3 −3 −0.8 −0.8 −4 −4 −4 −3 −2 −1 0 1 2 3 4 −4 −3 −2 −1 0 1 2 3 4 randomly initialized direction vector System spends considerable amount of time near saddle points.

  15. Variants: MD-GAD Atomistic x = v ˙ simulations of rare events v = F − 2( F , n ) n ˙ using the gentlest ascent γ ˙ n = − H n + ( n , H n ) n dynamics incorporate thermostat, barostat Amit Samanta Rare events GAD Ad-atom diffusion Quasi- Newtonian Conclusions A. Samanta and W. E, J Chem Phys (2012)

Recommend


More recommend