thermal hall effect of magnons
play

Thermal Hall effect of magnons Hosho Katsura (Dept. Phys., UTokyo) - PowerPoint PPT Presentation

Max Planck-UBC-UTokyo School@Hongo (2018/2/18) Thermal Hall effect of magnons Hosho Katsura (Dept. Phys., UTokyo) Rel ated papers : H.K., Nagaosa, Lee, Phys. Rev. Lett . 104 , 066403 (2010). Onose et al., Science 329 , 297 (2010).


  1. Max Planck-UBC-UTokyo School@Hongo (2018/2/18) Thermal Hall effect of magnons Hosho Katsura (Dept. Phys., UTokyo) Rel ated papers :  H.K., Nagaosa, Lee, Phys. Rev. Lett . 104 , 066403 (2010).  Onose et al., Science 329 , 297 (2010).  Ideue et al ., Phys. Rev. B 85 , 134411 (2012).

  2. 1/25 Outline 1. Spin Hamiltonian • Exchange and DM interactions • Microscopic origins 2. Elementary excitations 3. Hall effect and thermal Hall effect 4. Main results 5. Summary

  3. 2/25 Coupling between magnetic moments  Classical v.s. Quantum • Dipole-dipole interaction Usually, too small (< 1K) to explain transition temperatures… • Exchange interaction ( S i : spin at site i ) Direct exchange: J < 0  ferromagnetic (FM) Super-exchange: J > 0  antiferromagnetic (AFM)  Anisotropies Spin-orbit int. breaks SU(2) symmetry.  Dzyaloshinskii-Moriya (DM) int.: D Spin tend to NOTE) Inversion breaking is necessary. be orthogonal

  4. 3/25 (Crude) derivation  2-site Hubbard model U • Hamiltonian 2 1 • 2nd order perturbation at half-filling, Pauli’s exclusion ↑↑ ↑↓ ↓↑ ↓↓ Origin of exchange int. = electron correlation! Can explain AFM int. What about FM int.? (Multi-orbital nature, Kanamori- Goodenough, …)

  5. 4/25 Origin of DM interaction (1) Inversion symmetry broken, but  Spin-dependent hopping Time-reversal symmetry exists. Due to spin-orbit 1 2 θ =0 reduces to the • Hopping matrix spin-independent case  Unitary transformation One can ``absorb” the spin -dependent hopping! New fermions satisfy the same anti-commutation relations. Number ops. remain unchanged. • Hamiltonian in terms of f

  6. 5/25 Origin of DM interaction (2)  Effective Hamiltonian • How does it look like in original spins? Ex.) Prove the relation. Hint: express in terms of σ s. Dzyaloshinskii- Heisenberg int. Kaplan-Shekhtman-Aharony Moriya (DM) int. -Entin-Wohlman (KSAE) int. NOTE) One can eliminate the effect of the DM interaction if there is no loop.

  7. 6/25 Outline 1. Spin Hamiltonian 2. Elementary excitations • What are magnons? • From spins to bosons • Diagonalization of BdG Hamiltonian 3. Hall effect and thermal Hall effect 4. Main results 5. Summary

  8. 7/25 What are magnons?  FM Heisenberg model in a field • Ground state: spins are aligned in the same direction. z : coordination number  Elementary excitations -- Intuitive picture -- Ground state Excitation =NG mode Cf.) non-relativistic Nambu-Goldstone bosons Watanabe-Murayama, PRL 108 (2012); Hidaka, PRL 110 (2013). The picture is classical. But in ferromagnets, ground state and 1-magnon states are exact eigenstates of the Hamiltonian.

  9. 8/25 1-Magnon eigenstates  ``Motion” of flipped spin | i > is not an eigenstate! 1 2 N Flipped spin hops to the neighboring sites.  Bloch state Ex. ) 1D is an exact eigenstate with energy E ( k )  What about DM int.? D vector // z -axis Magnon picks up a phase factor!

  10. 9/25 From spins to bosons  Holstein-Primakoff transformation • Bose operators Number op.: • Spins in terms of b Obey the commutation relations of spins Often neglect nonlinear terms. ( Good at low temperatures.) b raises S z • Magnetic ground state = vacuum of bosons  Sublattice structure AFM int.  Approximate 1-magnon state • Spins on the other sublattice: a lowers S z One needs to introduce more species for a more complex order.

  11. 10/25 Diagonalization of Hamiltonian  Quadratic form of bosons h , Δ : N × N matrices • Ferromagnetic case Problem reduces to the diagonalization of h . Most easily done in k -space (Fourier tr.). • AFM (or more general) case Para-unitary Transformation leaves the boson commutations unchanged. are e.v. of Involved procedure. See, e.g., Colpa, Physica 93A , 327 (1978).

  12. 11/25 Outline 1. Spin Hamiltonian 2. Elementary excitations 3. Hall effect and thermal Hall effect • Hall effect and Berry curvature • Anomalous and thermal Hall effects • General formulation 4. Main results 5. Summary

  13. 12/25 Hall effect and Berry curvature  Quantum Hall effect (2D el. Gas) y x  TKNN formula PRL , 49 (1982) Integer n is a topological number! • Bloch wave function • Berry connection • Berry curvature Chern number Kubo formula relates Chern # and σ xy

  14. 13/25 Anomalous Hall effect  QHE without net magnetic field • Onsager’s reciprocal relation Time-reversal symmetry (TRS) must be broken for nonzero σ xy • Haldane’s model ( PRL 61 , 2015 (1988), Nobel prize 2016) Local magnetic field can break TRS! n.n. real and n.n.n. complex hopping  Integer QHE without Landau levels  Spontaneous symmetry breaking TRS can be broken by magnetic ordering. • Anomalous Hall effect Review: Nagaosa et al ., RMP 82 , 1539 (2010). : magnetization Itinerant electrons in ferromagnets. (i) Intrinsic and (ii) extrinsic origins. Anomalous velocity by Berry curvature in (i).

  15. 14/25 Thermal Hall effect  Thermal current C s are matrix, in general. Onsager relation: Absence of J : • Wiedemann-Franz law Universal for weakly interacting electrons  Righi-Leduc effect Transverse temperature gradient is produced in response to heat current In itinerant electron systems from Wiedemann-Franz What about Mott insulators? Hall effect without Lorentz force?  Berry curvature plays the role of magnetic field!

  16. 15/25 General formulation  TKNN-like formula for bosons Still well defined for • Bloch w.f. , Berry curvature 1-magnon Hamiltonian without paring term • Earlier work - Fujimoto, PRL 103 , 047203 (2009) - H.K., Nagaosa & Lee, PRL 104 , 066403 (2010) - Onose et al ., Science 329 , 297 (2010) Δ : energy separation Bose distribution Terms due to the orbital motion of magnon are missing… • Modified linear-response theory - Matsumoto & Murakami, PRL 106 , 197202; PRB 84 , 184406 (2011) Universally applicable to (free) bosonic systems! Magnons, phonons, triplons , photons (?) … NOTE) No quantization.

  17. 16/25 Outline 1. Spin Hamiltonian 2. Elementary excitations 3. Hall effect and thermal Hall effect 4. Main results • Kagome-lattice FM • Pyrochlore FM • Comparison of theory and experimement 5. Summary

  18. 17/25 Magnon Hall effect  Theory Magnons do not have charge. They do not feel Lorentz force. Nevertheless, they exhibit thermal Hall effect (THE)! Keys: 1. TRS is broken spontaneously in FM 2. DM interaction leads to Berry curvature ≠ 0 NOTE) Original theory concerned the effect of scalar chirality.  Experiment Magnon THE was indeed observed in FM insulators! Onose et al ., Science 329 , 297 (2010). Lu 2 V 2 O 7 1 1.5 Magnetization ( m B /V) k xy 0.3T -3 W/Km) (a) k xy 7T 0.8 M 0.3T 1 0.6 M 7T 0.4 k xy (10 0.5 0.2 0 0 0 50 100 150

  19. 18/25 Role of DM interaction DM vectors  Kagome model Bosonic ver. of Ohgushi-Murakami-Nagaosa ( PRB 62 (2000)) Scalar chirality order there ( )  DM. Nonzero Berry curvature! is expected to be nonzero.  MOF material Cu(1-3, bdc) FM exchange int. b/w Cu 2+ moments - Hirschberger et al ., PRL 115 , 106603 (2015) - Chisnell et al., PRL 115 , 147201 (2015) Nonzero THE response. Sign change consistent with theories: Mook, Heng & Mertig PRB 89 , 134409 (2014), Lee, Han & Lee, PRB 91 , 125413 (2015).

  20. 19/25 Pyrochlore ferromagnet Lu 2 V 2 O 7 Y. Onose et al., Science 329 , 297 (‘10). Lu 2 V 2 O 7 1 1 A D H || [111] T =5K 0.8 0.8 H =0.1T M ( m B /V)) Isotropic 0.6 M ( m B /V) 0.6 0.4 0.4 T c=70K H || [100] 0.2 H || [111] 0.2 H || [110] 0 B Resistivity(  cm) 10 4 0 0.2 0.4 0.6 0.8 1 m 0 H (T) 10 3 Highly 0.8 10 2 E resistive V 4+ : (t 2g ) 1 , S=1/2 10 1 H ||[111] 0.6 0T 10 0 C (J/molK) • Trigonal crystal field 5T C 9T 1.5 0.4 k xx (W/Km) 1 0.2 • Origin of FM: orbital pattern 0.5 Magnon & phonon Polarized neutron diffraction 0 10 20 0 50 100 150 (Ichikawa et al., JPSJ 74 (‘03)) T 1.5 (K 1.5 ) T (K)

  21. 20/25 Observed thermal Hall conductivity Lu 2 V 2 O 7 H ||[100] 70K 60K 2 80K 50K 1 0 -1 k xy (10 -3 W/Km) -2 2 40K 20K 10K 30K 1 0 -1 -2 -5 0 5 -5 0 5 -5 0 5 -5 0 5 Magnetic Field (T) Anomalous? Related to TRS breaking?

  22. 21/25 Model Hamiltonian  FM Heisenberg + DM • Allowed DM vectors Elhajal et al ., PRB 71 ; Kotov et al ., PRB 72 (2005). • Stability of FM g.s. against DM  Spin-wave Hamiltonian Band structure ( ) Only is important. • Hamiltonian in k-space Λ : 4x4 matrix.  4 bands

  23. 22/25 Comparison of theory and experiment  Formula (at H =0 + ) Berry curvature around k =0 can be obtained analytically - Explains the observed isotropy - D / J is the only fitting parameter  Fitting The fit yields | D / J | ~ 0.38 Observed in other pyrochlore FM insulators Ho 2 V 2 O 7 : D / J ~ 0.07, In 2 Mn 2 O 7 : D / J ~ -0.02 Reasonable! Cf.) D / J ~ 0.19 in pyrochlore AFM CdCr 2 O 4 Chern, Fennie & Tchernyshov, PRB 74 (2006).

  24. 23/25 What about other lattices YTiO 3 , S =1/2, T c=30K  Provskite-like lattices • Absence of THE in La 2 NiMnO 6 and YTiO 3 - Ideal cubic perovskite  No DM - In reality, it’s distorted  nonzero DM What’s the reason? Flux pattern  staggered Berry curvature is zero because of pseudo TRS in • Presence of THE in BiMnO 3 - The origin is unclear… T c ~100K May be due to complex orbital order

Recommend


More recommend