atmospheric chemistry ii oxidizing atmosphere
play

Atmospheric chemistry II Oxidizing atmosphere The main oxidants in - PowerPoint PPT Presentation

Atmospheric chemistry II Oxidizing atmosphere The main oxidants in the atmosphere are OH radical (OH) Ozone Nitrate Radical (NO 3 ) The OH radical: main tropospheric oxidant Primary source: O 3 + hv O 2 + O( 1 D)


  1. Atmospheric chemistry II

  2. Oxidizing atmosphere • The main oxidants in the atmosphere are – OH radical (·OH) – Ozone – Nitrate Radical (·NO 3 )

  3. The OH radical: main tropospheric oxidant Primary source: O 3 + hv  O 2 + O( 1 D) (1) ‏ O( 1 D) + M  O + M (2) ‏ O( 1 D) + H 2 O  2OH (3) ‏ Sink: oxidation of reduced species CO + OH  CO 2 + H Major OH sinks CH 4 + OH  CH 3 + H 2 O HCFC + OH  H 2 O +‏… GLOBAL MEAN [OH] = 1.2x10 6 molecules cm -3 and a lifetime of about 100 ms Earths surface, 30º N D.J. Jacob

  4. Tropospheric OH production takes place in a narrow UV window (300-320 nm) ‏ 30  equinox midday Solar spectrum D.J. Jacob

  5. O( 1 D) h ν HONO HCHO H 2 O NO O 3 NO h ν HNO 3 OH HO 2 H 2 O 2 + O 2 NO 2 HO 2 CH 4 HCHO H 2 SO 2 RO 2 H 2 SO 4 RO 2 + O 2 VOC CO NMHC O 3 RO 2 (Boy et al., ACP, 2005)

  6. Formation of HO 2 Radical, examples HCHO + hv  ·H + HCO ·H+O 2 +M  ·HO 2 +M HCHO + hv  H 2 + CO CO + ·OH  CO 2 + ·H ·H+O 2 +M  ·HO 2 +M

  7. Reaction of HO 2 To be included • OH + O3 = HO2 : 1.70D-12*EXP(-940/TEMP) ; • OH + H2 = HO2 : 7.70D-12*EXP(-2100/TEMP) ; • OH + CO = HO2 : 1.30D-13; • OH + H2O2 = HO2 : 2.90D-12*EXP(-160/TEMP) ; • HO2NO2 = HO2 + NO2 : 5.2D-6*EXP(19900/TEMP) ; • NO3 + H2O2 = HNO3 + HO2 : 4.1D-16 ; • HCHO = CO + HO2 + HO2 : J(9); – Cross section:3.60 D-20 cm2 – Quantum yield:0.9

  8. Reaction of HO 2 To be included • HO2 + O3 = OH : 2.03D-16*((TEMP/300)**4.57)* EXP(693/TEMP) ; • OH + HO2 = dummy : 4.80D-11*EXP(250/TEMP) ; • HO2 + HO2 = H2O2 : 2.20D- 13*EXP(600/TEMP); • HO2 + NO = OH + NO2 : 3.60D-12*EXP(270/TEMP) ; • HO2 + NO2 = HO2NO2 : 1.4D-13 ; • HO2 + NO3 = OH + NO2 : 4.00D-12 ;

  9. Reactions of OH to be included • All HO2 including OH • O1D = OH + OH : 2.20D-10*H2O ; • H2O2 = OH + OH : J(3) ; – Cross section:33.04D-20 cm2 – Quantum yield:0.49 • HONO = OH + NO : J(7); – Cross section:5.19D-19 cm2 – Quantum yield:0.40 • HNO3 = OH + NO2 : J(8); – Cross section:4.29D-18 cm2 – Quantum yield:0.88

  10. Reactions of OH to be included • OH + NO = HONO : 1.50D-11*EXP(TEMP/300)**-0.5 ; • OH + NO2 = HNO3 : 2.4S-11*(TEMP/300)**-1.7 ; • OH + NO3 = HO2 + NO2 : 2.00D-11 ; • OH + HO2NO2 = NO2 : 1.90D-12*EXP(270/TEMP) ; • OH + HONO = NO2 : 2.50D-12*EXP(-260/TEMP) ; • OH + HNO3 = NO3 : 7.20D-15*EXP(785/TEMP);

  11. Formation of Sulfuric acid • SO 2 + ·OH + M  ·HOSO 2 + M • ·HOSO 2 + O 2  ·HO 2 + SO 3 • H 2 O + SO 3 + M  H 2 SO 4 + M

  12. Reactions to be included 1. O + SO2 = SO3 : 4.00D-32*EXP(-1000/TEMP)*M ; 2. OH + SO2 = HSO3 : 1.5D-12*(TEMP/300) ; 3. HSO3 = HO2 + SO3 : 1.30D-12*EXP(-330/TEMP)*O2 ; 4. SO3 = H2SO4 : 5.D-15*H2O ; How d[SO3]/dt should look like? = K1[O][SO2] + k3[HSO3]-k4[SO3]

  13. Monoterpenes oxidation by OH radicals

  14. Reaction included in the model • APINENE + OH = APINAO2 :1.20D-11*EXP(444/TEMP) ;

  15. Ozone in the troposphere Greenhouse gas Toxic pollutant in surface air But it is the main precursor of OH and plays therefore a key role in maintaining the oxidizing power of the troposphere O 3 + hv  O 2 + O( 1 D) (1) ‏ O( 1 D) + M  O + M (2) ‏ O( 1 D) + H 2 O  2OH (3) ‏

  16. Tropospheric ozone (O 3 ): Global budget GEOS-CHEM model budget terms, Tg O 3 yr -1 Chem prod in 4920 Chem loss in 4230 O 2 troposphere troposphere h  Transport from 475 Deposition 1165 O 3 stratosphere STRATOSPHERE 8-18 km TROPOSPHERE h  NO 2 NO O 3 h  , H 2 O H 2 O OH HO 2 H 2 O 2 Deposition CO, VOC D.J. Jacob

  17. Depending on the NO/HO x ratio Ozone production: CO + ·OH → ·H + CO 2 ·H + O 2 + M → ·HO2 + M (b) HO 2 + NO → OH + NO 2 NO2 + hν (λ < 420 nm) → NO + O O + O2 → O3 Ozone destruction: CO + OH → H + CO 2 H + O 2 + M → HO 2 + M (a) HO 2 + O 3 → 2O 2 + OH Ra/Rb = Ka[HO2][O3] / Kb[HO2][NO] =2.5E-4 * [O3]/[NO] Break- even concentration ≈ 2.5 10 -4 (20 ppb O 3 ≈ 5 ppt NO)

  18. Reactions to be included in the model • O = O3 : 5.60D-34*O2*N2*((TEMP/300)**-2.6) + 6.00D- 34*O2*O2*((TEMP/300)**-2.6) ; • O3 = O1D : J(1) ; – Cross section:1.137D-17 cm2 – Quantum yield:0.8 • O + O3 = dummy : 8.00D-12*EXP(-2060/TEMP) ; • NO + O3 = NO2 : 1.40D-12*EXP(-1310/TEMP) ; • NO2 + O3 = NO3 : 1.40D-13*EXP(-2470/TEMP) ; • And all those involving O3 shown in OH and HO2 sections

  19. Monoterpenes Oxidation by Ozone • In a first step, ozone will be added to the double bond forming a cyclic structure:

  20. D-Limonene oxidation by Ozone APINENE + O3 = 0.77 * OH + APINOOA : 1.01D-15*EXP(-732/TEMP) ;

  21. The nitrate radical – NO 3 The third important oxidant is the nitrate radical NO 2 + O 3 →‏NO 3 + O 2 and is in equilibrium with N 2 O 5 according to NO 2 + NO 3 +‏M‏↔‏N 2 O 5 + M During daytime it photolyze rapidly by two reactions NO 3 + hν (λ‏<‏700‏nm)‏→‏NO‏+‏O 2 NO 3 + hν (λ‏<‏580‏nm)‏→‏NO 2 + O Typically NO 3 mixing ratios: daytime‏≈‏few‏ ppts night‏≈‏up‏to‏several‏hundreds‏of‏ ppt

  22. Reactions to be include • All above and: • NO2 + O3 = NO3 : 1.40D-13*EXP(-2470/TEMP) ; • NO + NO3 = NO2 + NO2 : 1.80D-11*EXP(110/TEMP) ; • NO2 + NO3 = NO + NO2 : 4.50D-14*EXP(-1260/TEMP) ; • NO2 + NO3 = N2O5 : 1.50D-12*(TEMP/300)**-0.7) ; • N2O5 = NO2 + NO3 : 9.7D14*((TEMP/300)**-0.1)*EXP(-11080/TEMP) ; • NO3 + H2O2 = HNO3 + HO2 : 4.1D-16 ; • NO3 + NO3 = NO2 + NO2 : 8.5D-13*EXP(-2450./TEMP) ;

  23. Reactions to be include • NO3 = NO : J(5); – Cross section: 4.58D-17 cm2 – Quantum yield:0.35 • NO3 = NO2 + O : J(6) ; – Cross section:4.58D-17 cm2 – Quantum yield:0.60

  24. Monoterpenes NO3 oxidation APINENE + NO3 = NAPINAO2 : 1.19D-12*EXP(490/TEMP) ;

  25. A word on organics • Note that in our model we only will use alpha-pinene, and only 1 oxidation path per oxidant. • Also we will use a fixed concentration of alpha pinene. In next lectures you will learn how to implement emissions in your model.

  26. Methane oxidation mechanism Starting the methane oxidation is the reaction with OH: CH 4 +‏OH‏→‏CH 3 + H 2 O The methyl radical reacts rapidly adds O 2 : CH 3 + O 2 →‏CH 3 O 2 The methylperoxy radical is considered part of the HO x -family and its main sinks are the reaction with HO 2 and NO. In the overall following reaction chain the C(-IV) atom in CH 4 is successively oxidized to C(+IV) in CO 2 . Consider high NO x -atmosphere: CH 4 + 10 O 2 -> CO 2 + H 2 O + 5 O 3 + 2 OH Consider now a low NO x -situation: CH 4 + 3 OH + 2 O 2 -> CO 2 + 3 H 2 O + HO 2 Ozone production and radical conversion or source is only reached in a high NO x -atmosphere. This results show the critical role of NO x for maintaining O 3 and OH in the troposphere.

  27. Oxidation of methane k CH4+OH = 9.65x10 -20 ∙T CH 4 + OH ∙exp( -1082/T) cm 3 Molek. CH 3 + H 2 O (+O 2 ) +RO 2 +HO 2 NO NO 2 +NO 2 0.67 HCHO + CH 3 OH CH 3 OOH CH 3 O 2 CH 3 OONO 2 k CH3O2+HO2 = 3.80x10 -13 ∙exp(780/T) cm 3 Molek. -1 s -1 k CH3O2+RO2 = 1.82x10 -13 ∙exp(416/T) cm 3 Molek. -1 s -1 k CH3O2+NO = 3.00x10 -12 ∙exp(280/T) cm 3 Molek. -1 s -1 HCHO

Recommend


More recommend