asymptotics of sharp constants of markov bernstein
play

Asymptotics of sharp constants of Markov-Bernstein inequalities in - PowerPoint PPT Presentation

Asymptotics of sharp constants of Markov-Bernstein inequalities in integral norm with classical weights Alexander APTEKAREV Keldysh Institute of Applied Mathematics RAS and Moscow State University, Russia aptekaa@keldysh.ru Midwest Workshop


  1. Asymptotics of sharp constants of Markov-Bernstein inequalities in integral norm with classical weights Alexander APTEKAREV Keldysh Institute of Applied Mathematics RAS and Moscow State University, Russia aptekaa@keldysh.ru Midwest Workshop on Asymptotic Analysis IPFW September 19-20, 2014. Fort Wayne Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  2. Joint work with Valeri Kaliagin (Nizhnii Novgorod, Russia) Dmitry Tulyakov (Moscow, Russia) Andre Draux (Rouen, France) Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  3. Overview Markov-Bernstein inequalities 1 Markov-Bernstein inequality in inner product spaces. 2 Hermite weight 3 Laguerre weight 4 Jacobi weight 5 Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  4. Markov-Bernstein inequalities. A.A. Markov On one question of D.I.Mendeleev , Izvestiya Peterburg Akademii Nauk, 62 (1889), pp. 1–24, (in Russian). For any polynomial Q , deg Q ≤ n one has || Q ′ || C [ − 1 , 1] ≤ n 2 || Q || C [ − 1 , 1] where || Q || C [ − 1 , 1] = − 1 ≤ x ≤ 1 | Q ( x ) | max The constant n 2 is sharp (Chebychev polynomials). Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  5. Markov-Bernstein inequalities. S.N. Bernshtein On the best approximation of the continuous functions by means of polynomials with fixed degree , Soobsheniya Kharkovskogo Matem. Obshestva (1912), (in Russian). For any polynomial Q , deg Q ≤ n one has || Q ′ || C (∆) ≤ n || Q || C (∆) where || Q || C (∆) = max | z |≤ 1 | Q ( z ) | The constant n is sharp ( Q ( z ) = z n ). Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  6. Markov-Bernstein inequalities. General setting. Let P n be the set of polynomials of degree at most n , X be a metric space and for any n , P n ⊂ X . For a given n find the sharp constant in inequality || Q ′ || X ≤ M n || Q || X , deg Q ≤ n Many generalizations and applications of Markov-Bernstein inequalities are known. G.V. Milovanovi´ c, D.S. Mitrinovi´ c, Th.M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros , World Scientific, Singapore 1994. Recent applications: Markov-Bernstein inequalities are primary tools to prove approximate degree lower bounds on Boolean functions. M. Bun J.Thaler Dual Lower Bounds for Approximate Degree and Markov-Bernstein Inequalities , arXiv:1302.6191v3, 22 Mar 2014 Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  7. Markov-Bernstein inequality in inner product spaces. Suppose X is an inner product functional space, with inner product ( f , g ). Then one can construct the sequence of orthonormal polynomials π n such that ( π k , π l ) = δ k , l , k , l = 0 , 1 , 2 , . . . . In this case one has for any Q ∈ P n || Q || 2 = | u 0 | 2 + | u 1 | 2 + . . . + | u n | 2 Q = u 0 π 0 + u 1 π 1 + . . . + u n π n , Q ′ = v 0 π 0 + v 1 π 1 + . . . + v n − 1 π n − 1 , || Q ′ || 2 = | v 0 | 2 + | v 1 | 2 + . . . + | v n − 1 | 2 The sharp constant in Markov-Bernstein inequality is || Q ′ || 2 M 2 n = sup || Q || 2 deg Q ≤ n It is sufficient to consider the subspace with u 0 = 0 ( | u 0 | 2 + | u 1 | 2 + . . . + | u n | 2 ≥ | u 1 | 2 + . . . + | u n | 2 ). In this case the linear transformation ( u 1 , u 2 , . . . , u n ) → ( v 0 , v 1 , . . . , v n − 1 ) is bijective on R n . Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  8. Markov-Bernstein inequality in inner product spaces. Denote by A the matrix of transformation v = Au , u = ( u 1 , u 2 , . . . , u n ), v = ( v 0 , v 1 , . . . , v n − 1 ). Then one has � || Au || M n = sup || u || = || A || = λ max ( AA T ) u � =0 The matrix A (matrix of differential operator in the basis of orthonormal polynomials) is crucial in the study of the sharp constants in Markov-Bernstein inequality. Remark: In some cases matrix B = A − 1 is more appropriate to use. One has 1 M n = � λ min ( B T B ) Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  9. Markov-Bernstein inequality in inner product spaces. Summary ONP basis π n in X : ( π k , π l ) = δ k , l , k , l = 0 , 1 , 2 , . . . . ∀ Q ∈ P n take n − 1 n − 1 � � Q ′ = Q = u k π k +1 , y k π k k =0 k =0 Define A : y = Au , u = ( u 1 , . . . , u n ), y = ( y 0 , . . . , y n − 1 ) or B = A − 1 . Then � || Au || 1 λ max ( AA T ) = M n = sup || u || = || A || = � λ min ( B T B ) u � =0 Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  10. Hermite weight Inner product � + ∞ f ( x ) g ( x ) e − x 2 dx ( f , g ) = −∞ Polynomials π k are orthonormal Hermite polynomials. The following relations are known √ π ′ k = 2 k π k − 1 , k = 1 , 2 , 3 , . . . In this case matrix A is diagonal √ √ √ A = diag( 2 , 4 , . . . , 2 n ) Therefore the sharp constant in Markov-Bernstein inequality for Hermite √ weight is M n = 2 n (E.Schmidt, 1944) Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  11. Laguerre weight e − x dx Polynomials π k are orthonormal Laguerre polynomials. We have   1 1 · · · 0 0   1 2 · · · 0 0     B T B = · · · · · · · · · · · · · · ·     0 0 · · · 2 1 0 0 · · · 1 2 Characteristic polynomials is perturbed (co-recursive) Chebyshev poly. ∆ n = ( λ − 2)∆ n − 1 − ∆ n − 2 , ∆ 1 = λ − 1 , ∆ 2 = λ 2 − 3 λ + 1 For the eigenvalues of B T B , one can obtain λ j ( B T B ) = 4 sin 2 (2 j − 1) π 4 n + 2 , j = 1 , 2 , . . . , n Therefore 1 = 2 n M n = π [1 + o (1)] π 2 sin 4 n +2 P.Turan [1960] Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  12. Generalized Laguerre weight x α e − x dx   α 0 β 1 0 · · · 0 0   β 1 α 1 β 2 · · · 0 0     B T B = · · · · · · · · · · · · · · · · · ·     0 0 0 · · · α n − 2 β n − 1 0 0 0 · · · β n − 1 α n − 1 k +1 ), β 2 α k = 1 + α where α 0 = (1 + α ), α k = (2 + k , k = 1 , 2 , . . . , n − 1. Characteristic polynomials ∆ k ( λ ) satisfy the recurrence equation ∆ k = ( λ − 2 − α α k )∆ k − 1 − (1 + k − 1)∆ k − 2 , k ≥ 2 with initial conditions ∆ 2 = λ 2 − (3 + 3 2 α ) λ + (1 + α )(1 + α ∆ 1 = λ − α − 1 , 2 ) . Polynomials ∆ k ( λ ) are orthogonal with respect to some measure with the support on [0 , 4]. Therefore one needs asymptotics of this sequence of polynomials in the neighborhood of the point 0. Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  13. Generalized Laguerre weight - Asymptotics ∆ k = ( λ − 2 − α α k )∆ k − 1 − (1 + k − 1)∆ k − 2 , k ≥ 2 Let q n ( λ ) = ∆ n ( λ ) / ∆ n (0), λ = h 2 , nh = z , q h n = q n ( h 2 ). We check ∆ n (0) / ∆ n +1 (0) = 1 + o ( 1 n ) then n → ∞ , z ∈ K ⋐ C q h n +1 − 2 q h n + q h q h n +1 − q h + 2 α n = o (1 n − 1 n − 1 + q h n ) h 2 z 2 h It can be proved [Apt., Sb. Math. 1993 76 35–50], h → 0 � � q n ( z 2 1 + o (1 j ν ( z ) = 2 ν Γ( ν + 1) J ν ( z ) , n 2 ) = j ν ( z ) n ) , where J ν ( z ) is the Bessel function, ν = α − 1 2 . Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  14. Generalized Laguerre weight Theorem: let ν = α − 1 2 . Then one has for the Markov-Bernstein best constant for generalized Laguerre weight M n = n [1 + o (1)] z 1 where z 1 is the zero of the Bessel function J ν ( z ), nearest to the origin. In particular, if α = 0 then ν = − 1 2 and z 1 is the zero of the Bessel function � 2 π J − 1 / 2 ( z ) = cos( z ) z nearest to the origin. One has z 1 = π/ 2 A.I. Aptekarev, A. Draux and V.A. Kaliaguine , On asymptotics of the exact constants in the Markov-Bernshtein inequalities with classical weighted integral metrics , Uspekhi. Mat. Nauk, 55, (2000) 173–174; Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

  15. Jacobi weight Inner product � 1 f ( x ) g ( x )(1 − x ) α (1 + x ) β dx ( f , g ) = − 1 First known case. Legendre weight α = β = 0 � 1 ( f , g ) = f ( x ) g ( x ) dx − 1 E.Schmidt [1944]. M n = (2 n + 3) 2 [1 + o (1)] = n 2 π [1 + o (1)] 4 π Midwest Workshop on Asymptotic Analysis IPFW Alexander APTEKAREV (KIAM, MSU) Asymptotics of sharp constants / 27

Recommend


More recommend