asymmetric dark matter from and new strong dynamics
play

Asymmetric dark matter from and New Strong Dynamics Mads Toudal - PowerPoint PPT Presentation

Asymmetric dark matter from and New Strong Dynamics Mads Toudal Frandsen Rudolf Peierls Centre for Theoretical Physics November 5 th 2010 What is the world made of? What is the world made of? Baryons but no anti- baryons Baryon mass


  1. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Extended Technicolor and fermion masses ETC ETC: (Eichten and Lane 80) New gauge theory with SM and TC fermions in the same multiplet. ψ L , ¯ ¯ Q L ψ R ,Q R ¯ Q L Q R Mads Toudal Frandsen Technicolor Dark matter

  2. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Extended Technicolor and fermion masses ETC ψ L , ¯ ¯ Q L ψ R ,Q R ¯ Q R Q L Mads Toudal Frandsen Technicolor Dark matter

  3. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Extended Technicolor and fermion masses ETC ψ L , ¯ ¯ Q L ψ R ,Q R ¯ Q L Q R 1 Four fermion operators: QQ ¯ ¯ QQ ¯ ¯ ψψ ¯ ¯ QQ ψψ ψψ α + β + γ + . . . Λ 2 Λ 2 Λ 2 ETC ETC ETC 2 (Too!) Generically Λ ETC > 10 3 TeV to suppress FCNC’s: (King 89; Evans and Ross 94; Appelquist and Shrock 02; Evans and Sannino 05; Christensen, Piai and Shrock 06) Mads Toudal Frandsen Technicolor Dark matter

  4. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Extended Technicolor and fermion masses ETC ψ L , ¯ ¯ Q L ψ R ,Q R ¯ Q L Q R 1 Four fermion operators: QQ ¯ ¯ QQ ¯ ¯ ψψ ¯ ¯ QQ ψψ ψψ α + β + γ + . . . Λ 2 Λ 2 Λ 2 ETC ETC ETC 2 (Too!) Generically Λ ETC > 10 3 TeV to suppress FCNC’s: (King 89; Evans and Ross 94; Appelquist and Shrock 02; Evans and Sannino 05; Christensen, Piai and Shrock 06) 3 Focus on Technicolor sector Mads Toudal Frandsen Technicolor Dark matter

  5. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Constraints from LEP 1 A minimal matter content in the TC sector is favored: 4 π S ≡ − 16 π Π ′ W 3 B (0) , T ≡ (Π W 1 W 1 (0) − Π W 3 W 3 (0)) s 2 W c 2 W M 2 Z Q , L 0.4 m W m t = 171.4 ± 2.1 GeV m H = 114...1000 GeV prel. W 3 U ≡ 0 B 0.2 Γ ll 0 T d ( R TC ) m t -0.2 S naive = N D 6 π m H S = S naive (1 + δ ) sin 2 θ eff sin 2 θ lept 68 % CL -0.4 -0.4 -0.2 0 0.2 0.4 S (Kennedy and Lynn 89; Peskin and Takeuchi 90; Altarelli and Barbieri 91) Mads Toudal Frandsen Technicolor Dark matter

  6. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . L L R R Mads Toudal Frandsen Technicolor Dark matter

  7. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . L L R R ’Orthogonal TC’ ’QCD TC’ ’Symplectic TC’ Mads Toudal Frandsen Technicolor Dark matter

  8. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . L L R R ’Orthogonal TC’ ’QCD TC’ ’Symplectic TC’ R complex R real R pseudo-real Mads Toudal Frandsen Technicolor Dark matter

  9. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . L L R R ’Orthogonal TC’ ’QCD TC’ ’Symplectic TC’ R complex R real R pseudo-real F of SO ( N ) F of SU ( N ) F of Sp (2 N ) Mads Toudal Frandsen Technicolor Dark matter

  10. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . L L R R ’Orthogonal TC’ ’QCD TC’ ’Symplectic TC’ R complex R real R pseudo-real F of SO ( N ) F of SU ( N ) F of Sp (2 N ) G GB : SU (2) SU (4) / SO (4) SU (4) / Sp (4) Mads Toudal Frandsen Technicolor Dark matter

  11. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . L L R R ’Orthogonal TC’ ’QCD TC’ ’Symplectic TC’ R complex R real R pseudo-real F of SO ( N ) F of SU ( N ) F of Sp (2 N ) G GB : SU (2) SU (4) / SO (4) SU (4) / Sp (4) 3 Π ⊕ 3 ⊕ ¯ 3 Π ⊕ 1 ⊕ ¯ 3 3 Π 1 Mads Toudal Frandsen Technicolor Dark matter

  12. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . L L R R ’Orthogonal TC’ ’QCD TC’ ’Symplectic TC’ R complex R real R pseudo-real F of SO ( N ) F of SU ( N ) F of Sp (2 N ) G GB : SU (2) SU (4) / SO (4) SU (4) / Sp (4) 3 Π ⊕ 3 ⊕ ¯ 3 Π ⊕ 1 ⊕ ¯ 3 3 Π 1 � Π � Π � Π 0 Π + � � � T i T s Π = Π − Π 0 T ∗ Π T T ∗ Π T s i Mads Toudal Frandsen Technicolor Dark matter

  13. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . L L R R ’Orthogonal TC’ ’QCD TC’ ’Symplectic TC’ R complex R real R pseudo-real F of SO ( N ) F of SU ( N ) F of Sp (2 N ) G GB : SU (2) SU (4) / SO (4) SU (4) / Sp (4) 3 Π ⊕ 3 ⊕ ¯ 3 Π ⊕ 1 ⊕ ¯ 3 3 Π 1 � Π � Π � Π 0 Π + � � � T i T s Π = Π − Π 0 T ∗ Π T T ∗ Π T s i � T 0 T + � T 0 � � 0 T i = T s = T − T 0 ∗ T 0 ∗ 0 Mads Toudal Frandsen Technicolor Dark matter

  14. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R Mads Toudal Frandsen Technicolor Dark matter

  15. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) Mads Toudal Frandsen Technicolor Dark matter

  16. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ 4 of SU (4) (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) Mads Toudal Frandsen Technicolor Dark matter

  17. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ 4 of SU (4) U L D L U L D L (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) Mads Toudal Frandsen Technicolor Dark matter

  18. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ 4 of SU (4) U L D L U L D L SM singlet (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) Mads Toudal Frandsen Technicolor Dark matter

  19. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ 4 of SU (4) U L D L U L D L SM singlet M T ∼ N 3 / 2 TC F Π (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) Mads Toudal Frandsen Technicolor Dark matter

  20. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ 4 of SU (4) U L D L U L D L SM singlet M T ∼ N 3 / 2 TC F Π (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) Mads Toudal Frandsen Technicolor Dark matter

  21. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ R real R pseudo-real 4 of SU (4) U L D L U L D L SM singlet M T ∼ N 3 / 2 TC F Π (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) Mads Toudal Frandsen Technicolor Dark matter

  22. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ R real R pseudo-real 4 of SU (4) T 0 ∼ U L D L T 0 ∼ U L D L U L D L U L D L SM singlet M T ∼ N 3 / 2 TC F Π (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) Mads Toudal Frandsen Technicolor Dark matter

  23. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ R real R pseudo-real 4 of SU (4) T 0 ∼ U L D L T 0 ∼ U L D L U L D L U L D L Iso-spin 0 GB SM singlet SM singlet GB M T ∼ N 3 / 2 TC F Π (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) Mads Toudal Frandsen Technicolor Dark matter

  24. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ R real R pseudo-real 4 of SU (4) T 0 ∼ U L D L T 0 ∼ U L D L U L D L U L D L Iso-spin 0 GB SM singlet SM singlet GB T 0 ∼ − g 2 F 2 M T ∼ N 3 / 2 M 2 M T 0 ∼ g F Π TC F Π Π (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) Mads Toudal Frandsen Technicolor Dark matter

  25. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U (1) TB symmetry � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ . (1) L L R R ’iTIMP’ ’TIMP’ ’TIMP’ R real R pseudo-real 4 of SU (4) T 0 ∼ U L D L T 0 ∼ U L D L U L D L U L D L Iso-spin 0 GB SM singlet SM singlet GB T 0 ∼ − g 2 F 2 M T ∼ N 3 / 2 M 2 M T 0 ∼ g F Π TC F Π Π (M.T.F and F.Sannino (Ryttov and Sannino (Bahr, Chivukula and 09) 08; Foadi, M.T.F and Farhi 90; Nussinov 92) Sannino 09) (Other candidates in MT: Gudnason, Kouvaris and Sannino 05; Kainulainen, Virkaj¨ arvi and Tuominen 06, 09, 10; Kouvaris 07; Khlopov and Kouvaris 08) Mads Toudal Frandsen Technicolor Dark matter

  26. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Direct detection T T T T Charge radius Λ 2 T ∗ ← → ∂ µ T ∂ ν F µν . L B = ie d B γ H (Bagnasco, Dine and Thomas 93) N N N N Composite Higgs L Yuk = d H v ev T ∗ TH or H = d 13 L GB Λ H ∂ µ T ∗ ∂ µ T . (M.T.F and Sannino 09) H Mads Toudal Frandsen Technicolor Dark matter

  27. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Direct detection T T T T Charge radius Λ 2 T ∗ ← → ∂ µ T ∂ ν F µν . L B = ie d B γ H (Bagnasco, Dine and Thomas 93) N N N N Composite Higgs L Yuk = d H v ev T ∗ TH or H = d 13 L GB Λ H ∂ µ T ∗ ∂ µ T . (M.T.F and Sannino 09) H For colored baryons: Gluonic polarizabilities (Nussinov 92 ; Chivukula et al 92) Mads Toudal Frandsen Technicolor Dark matter

  28. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Direct detection T T T T Charge radius Λ 2 T ∗ ← → ∂ µ T ∂ ν F µν . L B = ie d B γ H (Bagnasco, Dine and Thomas 93) N N N N Composite Higgs L Yuk = d H v ev T ∗ TH or H = d 13 L GB Λ H ∂ µ T ∗ ∂ µ T . (M.T.F and Sannino 09) H For colored baryons: Gluonic polarizabilities (Nussinov 92 ; Chivukula et al 92) For spin-1/2 baryons: Dipole moments (Nussinov 92 ; Bagnasco, Dine and Thomas 93) Mads Toudal Frandsen Technicolor Dark matter

  29. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Direct Detection Limits on TIMPs 10 � 40 d B �� 1 TeV d 12 � 3 0 10 � 42 � 0.3 m H � 200 0.3 Σ nucleon � cm 2 � 10 � 44 CDMS Ge 10 � 46 XENON100 10 � 48 50 100 200 500 1000 m T � GeV � (Foadi, M.T.F and Sannino 09; Belyaev, M.T.F, Sannino and Sarkar; Exclusion limits courtesy of C. Mccabe 10) Mads Toudal Frandsen Technicolor Dark matter

  30. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Direct Detection Limits on TIMPs 10 � 40 d B �� 1 TeV d 12 � 3 0 10 � 42 � 0.3 m H � 200 0.3 Σ nucleon � cm 2 � 10 � 44 CDMS Ge 10 � 46 XENON100 10 � 48 50 100 200 500 1000 m T � GeV � (Foadi, M.T.F and Sannino 09; Belyaev, M.T.F, Sannino and Sarkar; Exclusion limits courtesy of C. Mccabe 10) Indirect detection of Decaying Dark Matter: (Nardi, Sannino and Strumia 09) Mads Toudal Frandsen Technicolor Dark matter

  31. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC signatures of (i)TIMPs q T Z,R 1 , 2 H T ∗ (i)TIMP Invisible Higgs ℓ + Z (Foadi, M.T.F and Sannino 08 ; ℓ − q ¯ Godbole, Guchait, Mazumdar, Moretti and Roy 03) . Mads Toudal Frandsen Technicolor Dark matter

  32. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC signatures of (i)TIMPs q T Z,R 1 , 2 H T ∗ (i)TIMP Invisible Higgs ℓ + Z (Foadi, M.T.F and Sannino 08 ; ℓ − q ¯ Godbole, Guchait, Mazumdar, Moretti and Roy 03) . W ± iTIMP ’Antlers’ q T ± T 0 (M.T.F and Sannino 09 ; Han, Kim Z,R 1 , 2 and Song 09) T 0 ∗ T ±∗ q ¯ W ∓ Mads Toudal Frandsen Technicolor Dark matter

  33. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC signatures of (i)TIMPs q T Z,R 1 , 2 H T ∗ (i)TIMP Invisible Higgs ℓ + Z (Foadi, M.T.F and Sannino 08 ; ℓ − q ¯ Godbole, Guchait, Mazumdar, Moretti and Roy 03) . W ± iTIMP ’Antlers’ q T ± T 0 (M.T.F and Sannino 09 ; Han, Kim Z,R 1 , 2 and Song 09) T 0 ∗ T ±∗ ¯ q W ∓ Note: The same signatures from a new stable heavy lepton! (M.T.F, Masina and Sannino 09 ; Antipin, Heikinheimo, Tuominen 09) Mads Toudal Frandsen Technicolor Dark matter

  34. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs (i)TIMP missing energy signals q T Z, R 1 , 2 H T ∗ ℓ + Z ℓ − q ¯ Number of events/5 GeV @ 100 fb -1 10 3 Number of events/5 GeV @ 100 fb -1 10 3 M H =160 M H =160 M H =300 M H =200 ZZ ZZ M H =450 M H =300 M A =750,gt=5,S=0.3 M A =500,gt=5,S=0.3 WW WW 10 2 10 2 10 10 1 1 100 200 300 400 100 200 300 400 Missing p T (GeV) Missing p T (GeV) (Foadi, M.T.F and Sannino 08; Godbole, Guchait, Mazumdar, Moretti and Roy 03) . Mads Toudal Frandsen Technicolor Dark matter

  35. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Walking Technicolor 1 TC sector: Walking reduces the full S-parameter (Sundrum and Hsu 92; Appelquist and Sannino 98; Harada, Kurachi and Yamawaki 03; Kurachi and Shrock 06) Mads Toudal Frandsen Technicolor Dark matter

  36. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Walking Technicolor 1 TC sector: Walking reduces the full S-parameter (Sundrum and Hsu 92; Appelquist and Sannino 98; Harada, Kurachi and Yamawaki 03; Kurachi and Shrock 06) 2 ETC sector: Walking reduces tension between SM fermion masses and FCNC’s (Holdom 81, 85; Yamawaki, Bando and Matumoto 86; Appelquist, Karabali and Wijewardhana 86) Mads Toudal Frandsen Technicolor Dark matter

  37. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Conformal window and Walking (Fig:Sannino, cp3-origins 09) Mads Toudal Frandsen Technicolor Dark matter

  38. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs ETC fermion masses and Walking 1 Four fermion operators: α � ¯ QQ � ¯ + β � ¯ QQ � ¯ ψψ ¯ ¯ QQ ψψ ψψ + γ + . . . Λ 2 Λ 2 Λ 2 ETC ETC ETC Mads Toudal Frandsen Technicolor Dark matter

  39. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs ETC fermion masses and Walking 1 Four fermion operators: α � ¯ QQ � ¯ + β � ¯ QQ � ¯ ψψ ¯ ¯ QQ ψψ ψψ + γ + . . . Λ 2 Λ 2 Λ 2 ETC ETC ETC 2 Fermion masses: ∼ d ( R TC )Λ 3 − γ TC Λ γ M ψ ∼ � ¯ QQ � ETC ETC Λ 2 Λ 2 ETC ETC Mads Toudal Frandsen Technicolor Dark matter

  40. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs ETC fermion masses and Walking 1 Four fermion operators: α � ¯ QQ � ¯ + β � ¯ QQ � ¯ ψψ ¯ ¯ QQ ψψ ψψ + γ + . . . Λ 2 Λ 2 Λ 2 ETC ETC ETC 2 Fermion masses: ∼ d ( R TC )Λ 3 − γ TC Λ γ M ψ ∼ � ¯ QQ � ETC ETC Λ 2 Λ 2 ETC ETC 3 Condensate enhancement from Walking: QQ > ETC ∼ (Λ ETC ) γ ( α ∗ ) < ¯ < ¯ QQ > TC Λ TC (Holdom 81, 85; Yamawaki, Bando and Matumoto 86; Appelquist, Karabali and Wijewardhana 86) Mads Toudal Frandsen Technicolor Dark matter

  41. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs ETC fermion masses and Walking 1 Four fermion operators: α � ¯ QQ � ¯ + β � ¯ QQ � ¯ ψψ ¯ ¯ QQ ψψ ψψ + γ + . . . Λ 2 Λ 2 Λ 2 ETC ETC ETC 2 Fermion masses: ∼ d ( R TC )Λ 3 − γ TC Λ γ M ψ ∼ � ¯ QQ � ETC ETC Λ 2 Λ 2 ETC ETC 3 Condensate enhancement from Walking: QQ > ETC ∼ (Λ ETC ) γ ( α ∗ ) < ¯ < ¯ QQ > TC Λ TC (Holdom 81, 85; Yamawaki, Bando and Matumoto 86; Appelquist, Karabali and Wijewardhana 86) 4 (Too) Naively Λ ETC > 10 3 TeV to suppress FCNC’s: (King 89; Evans and Ross 94; Appelquist and Shrock 02; Evans and Sannino 05; Christensen, Piai and Shrock 06) Mads Toudal Frandsen Technicolor Dark matter

  42. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Analytical approaches to the conformal window 4 π = − β 0 1 Ladder approximation: α c = π α ∗ 3 C 2 ( R ) , β 1 . (Appelquist, Lane and Muhanta 88; Cohen and Georgi 89; Sannino and Tuominen 04; Dietrich and Sannino 06; Ryttov and Sannino 07) 2 All-orders beta function conjecture(s) (Ryttov and Sannino 08; Antipin and Tuominen 09; Dietrich 09) 3 Dualities (Sannino 09) 4 Compactification approach (Unsal and Poppitz 09; Ogilvie and Myers 09;) 5 Worldline formalism (Armoni 09) 6 Holography (Hong and Yee 06; Alvares, Evans, Gebauer and Weatherill 09) 7 Metric Confinenement MC and Causal Analytic couplings (Oehme and Zimmerman 80; Nishijima 86; Oehme 1990; Gardi and Grunberg 98; M.T.F, Pickup and Teper 10) Mads Toudal Frandsen Technicolor Dark matter

  43. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Conformal window lower bounds: MC and AO Fundamental rep Adjoint rep 25 2.5 20 2.0 15 1.5 N f N f II,SD 10 N f 1.0 II,MC N f I 5 N f 0.5 CA N f II,AO N f 0 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 N C N C 2 � index symmetric rep 2AS 4 15 3 10 2 N f N f 5 1 0 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 3.0 3.5 4.0 4.5 5.0 N C N C (M.T.F, T. Pickup and M. Teper 10) . Mads Toudal Frandsen Technicolor Dark matter

  44. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Some Minimal Models of Walking Technicolor � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ .. (2) L L R R Mads Toudal Frandsen Technicolor Dark matter

  45. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Some Minimal Models of Walking Technicolor � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ .. (2) L L R R MWT model: (Sannino and Tuominen 04) G TC = SU (2). R = Adj . Leptons. (Dietrich, Sannino and Tuominen 05) Mads Toudal Frandsen Technicolor Dark matter

  46. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Some Minimal Models of Walking Technicolor � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ .. (2) L L R R MWT model: (Sannino and Tuominen 04) G TC = SU (2). R = Adj . Leptons. (Dietrich, Sannino and Tuominen 05) OMT model NMWT model UMT model G TC = SO (4) G TC = SU (3) G TC = SU (2) (Sannino and Tuominen 04) (M.T.F and F.Sannino (Ryttov and Sannino 09) 08) Mads Toudal Frandsen Technicolor Dark matter

  47. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Some Minimal Models of Walking Technicolor � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ .. (2) L L R R MWT model: (Sannino and Tuominen 04) G TC = SU (2). R = Adj . Leptons. (Dietrich, Sannino and Tuominen 05) OMT model NMWT model UMT model G TC = SO (4) G TC = SU (3) G TC = SU (2) R = F R = 2 S R = F , Adj (Sannino and Tuominen 04) (M.T.F and F.Sannino (Ryttov and Sannino 09) 08) Mads Toudal Frandsen Technicolor Dark matter

  48. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Some Minimal Models of Walking Technicolor � T � U +1 / 2 , D − 1 / 2 U +1 / 2 , D − 1 / 2 Q L = , ; λ .. (2) L L R R MWT model: (Sannino and Tuominen 04) G TC = SU (2). R = Adj . Leptons. (Dietrich, Sannino and Tuominen 05) OMT model NMWT model UMT model G TC = SO (4) G TC = SU (3) G TC = SU (2) R = F R = 2 S R = F , Adj iTIMP TIMP (Sannino and Tuominen 04) (M.T.F and F.Sannino (Ryttov and Sannino 09) 08) Mads Toudal Frandsen Technicolor Dark matter

  49. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Conformal window lower bounds: MC and AO Fundamental rep Adjoint rep 25 2.5 20 2.0 15 1.5 N f N f II,SD 10 N f 1.0 II,MC N f I 5 N f 0.5 CA N f II,AO N f 0 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 N C N C 2 � index symmetric rep 2AS 4 15 3 10 2 N f N f 5 1 0 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 3.0 3.5 4.0 4.5 5.0 N C N C (M.T.F, T. Pickup and M. Teper 10) . Mads Toudal Frandsen Technicolor Dark matter

  50. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Lattice simulations (Dedicated collaborations: Lattice Strong Dynamics (US) ; Strong BSM (EU) ) Mads Toudal Frandsen Technicolor Dark matter

  51. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs EFT for strong dynamics @ LHC common sector: SU L (2) × SU R (2) × U TB (1) → SU V (2) × U TB (1) . New states: Lightest (axial)-vector triplets and scalar R ± , 0 , R ± , 0 , H . TIMPs 1 2 Input parameters and constraints: e , G F , M Z ; S , Sum Rules . Main free parameters: M A , ˜ g , M H . (Appelquist, Da Silva and Sannino 99; Foadi, M.T.F, Ryttov and Sannino Mads Toudal Frandsen Technicolor Dark matter

  52. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs EFT for strong dynamics @ LHC common sector: SU L (2) × SU R (2) × U TB (1) → SU V (2) × U TB (1) . New states: Lightest (axial)-vector triplets and scalar R ± , 0 , R ± , 0 , H . TIMPs 1 2 Input parameters and constraints: e , G F , M Z ; S , Sum Rules . Main free parameters: M A , ˜ g , M H . (Appelquist, Da Silva and Sannino 99; Foadi, M.T.F, Ryttov and Sannino EFTs for ’BESS’ models, ’3-site/4-site’ models and LSTC (Casalbuoni, Deandrea, De Curtis, Dominici, Gatto, Grazzini 95; He et al 08; Lane and Martin 09) Mads Toudal Frandsen Technicolor Dark matter

  53. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Parameter space (Foadi, M.T.F and Sannino 07 ; Belyaev, Foadi, M.T.F, J¨ arvinen, Pukhov, Sannino 08) Mads Toudal Frandsen Technicolor Dark matter

  54. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Mass spectrum, imposing S and WSR1 2.2 2.2 Mass Spectrum (TeV) Mass Spectrum (TeV) 2 2 1.8 1.8 1.6 1.6 1.4 1.4 R ± ,0 R ± ,0 2 2 1.2 1.2 1 1 0.8 0.8 R ± ,0 R ± ,0 S=0.3 S=0.3 0.6 0.6 1 1 g ˜=5 g ˜=2 0.4 0.4 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 M A (TeV) M A (TeV) Figure: R 1 , 2 spectrum. (Foadi, M.T.F, Ryttov and Sannino 08) Mads Toudal Frandsen Technicolor Dark matter

  55. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC Phenomenology Basic phenomenology controlled by ˜ g , M A , M H . R 1 , 2 R 1 , 2 ˜ g g / ˜ g Mads Toudal Frandsen Technicolor Dark matter

  56. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC Phenomenology Basic phenomenology controlled by ˜ g , M A , M H . R 1 , 2 R 1 , 2 ˜ g g / ˜ g Different decay channels probe R 1 , R 2 and H . Mads Toudal Frandsen Technicolor Dark matter

  57. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC Phenomenology Basic phenomenology controlled by ˜ g , M A , M H . R 1 , 2 R 1 , 2 g ˜ g / ˜ g Different decay channels probe R 1 , R 2 and H . 1 , 2 → ℓ + ℓ − . Single top: R ± Di-lepton: R 0 1 , 2 → tb Mads Toudal Frandsen Technicolor Dark matter

  58. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC Phenomenology Basic phenomenology controlled by ˜ g , M A , M H . R 1 , 2 R 1 , 2 g ˜ g / ˜ g Different decay channels probe R 1 , R 2 and H . 1 , 2 → ℓ + ℓ − . Single top: R ± Di-lepton: R 0 1 , 2 → tb Di-boson: R 2 → ZW / WW . Mads Toudal Frandsen Technicolor Dark matter

  59. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC Phenomenology Basic phenomenology controlled by ˜ g , M A , M H . R 1 , 2 R 1 , 2 g ˜ g / ˜ g Different decay channels probe R 1 , R 2 and H . 1 , 2 → ℓ + ℓ − . Single top: R ± Di-lepton: R 0 1 , 2 → tb Di-boson: R 2 → ZW / WW . Higgs-Strahlung: R 1 → HZ / HW . Mads Toudal Frandsen Technicolor Dark matter

  60. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC Phenomenology Basic phenomenology controlled by ˜ g , M A , M H . R 1 , 2 R 1 , 2 ˜ g g / ˜ g Different decay channels probe R 1 , R 2 and H . 1 , 2 → ℓ + ℓ − . Single top: R ± Di-lepton: R 0 1 , 2 → tb Di-boson: R 2 → ZW / WW . Higgs-Strahlung: R 1 → HZ / HW . Higgs-Decays: H → ZZ / WW ( b ¯ b ?). Mads Toudal Frandsen Technicolor Dark matter

  61. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC Phenomenology Basic phenomenology controlled by ˜ g , M A , M H . R 1 , 2 R 1 , 2 ˜ g g / ˜ g Different decay channels probe R 1 , R 2 and H . 1 , 2 → ℓ + ℓ − . Single top: R ± Di-lepton: R 0 1 , 2 → tb Di-boson: R 2 → ZW / WW . Higgs-Strahlung: R 1 → HZ / HW . Higgs-Decays: H → ZZ / WW ( b ¯ b ?). boosted tops, W, Z and H Mads Toudal Frandsen Technicolor Dark matter

  62. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC Phenomenology Basic phenomenology controlled by ˜ g , M A , M H . R 1 , 2 R 1 , 2 ˜ g g / ˜ g Different decay channels probe R 1 , R 2 and H . 1 , 2 → ℓ + ℓ − . Single top: R ± Di-lepton: R 0 1 , 2 → tb Di-boson: R 2 → ZW / WW . Higgs-Strahlung: R 1 → HZ / HW . Higgs-Decays: H → ZZ / WW ( b ¯ b ?). boosted tops, W, Z and H Lattice can (in principle) narrow down parameter space for each model Mads Toudal Frandsen Technicolor Dark matter

  63. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs LHC Phenomenology Basic phenomenology controlled by ˜ g , M A , M H . R 1 , 2 R 1 , 2 ˜ g g / ˜ g Different decay channels probe R 1 , R 2 and H . 1 , 2 → ℓ + ℓ − . Single top: R ± Di-lepton: R 0 1 , 2 → tb Di-boson: R 2 → ZW / WW . Higgs-Strahlung: R 1 → HZ / HW . Higgs-Decays: H → ZZ / WW ( b ¯ b ?). boosted tops, W, Z and H Lattice can (in principle) narrow down parameter space for each model MWT/OMT, NMWT, UMT etc... Mads Toudal Frandsen Technicolor Dark matter

  64. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Vector Production 10 2 σ (pb) σ (pb) 10 2 10 R ± 2 10 1 R ± 1 2 -1 R ± 10 1 -1 10 -2 10 -2 R ± 10 1 -3 10 -3 10 -4 S=0.3 10 g ˜=2 -4 S=0.3 -5 10 10 g ˜=5 -6 -5 10 10 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Mass (TeV) Mass (TeV) Figure: DY production of R 1 , 2 . (Belyaev, Foadi, M.T.F, J¨ arvinen, Pukhov, Sannino 08) Mads Toudal Frandsen Technicolor Dark matter

  65. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Vector BRs 1 1 1 ) 1 ) W ± H BR(R ± ff BR(R ± nl -1 -1 tb 10 10 ff W ± Z nl -2 -2 tb 10 10 W ± Z -3 -3 W ± H 10 10 -4 -4 10 10 -5 -5 10 10 S=0.3 S=0.3 g ˜=2 g ˜=5 -6 -6 10 10 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Mass (TeV) Mass (TeV) Figure: BR’s of R 1 . (Belyaev, Foadi, M.T.F, J¨ arvinen, Pukhov, Sannino 08) Mads Toudal Frandsen Technicolor Dark matter

  66. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs ℓ + ℓ − signature @ LHC using CalcHEP 10 5 Number of events/20 GeV @ 100 fb -1 Number of events/20 GeV @ 100 fb -1 S=0.3 10 4 S=0.3 g ˜=2 10 4 g ˜=2 10 3 10 3 10 2 10 2 10 10 1 1 500 1000 1500 2000 500 1000 1500 2000 M T M ll (GeV) l (GeV) Figure: Left: Dilepton invariant mass distributions M ℓℓ for pp → R 0 1 , 2 → ℓ + ℓ − Right: Single lepton transverse mass distributions M T ℓ pp → R ± 1 , 2 → ℓ ± (Belyaev, Foadi, M.T.F, J¨ arvinen, Pukhov, Sannino 08) Mads Toudal Frandsen Technicolor Dark matter

  67. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Results for tb (tb) 24 d M(tb) pp t b ev → ev d N 160 d N rec 22 pp → t t d M 20 140 pp → w+b b 18 pp → w+jj 120 16 14 100 12 80 10 60 8 6 40 4 20 2 0 0 400 500 600 700 800 900 1000 1100 1200 1300 1400 500 600 700 800 900 1000 1100 M(tb ), GeV M(tb), GeV rec Figure: Reconstructed (left plot) and partonic (right plot) invariant mass of top and b-quarks after final cuts. Distributions normalized to 30 fb − 1 . (A. Belyaev, M.T.F and A.Sherstnev in preparation) Mads Toudal Frandsen Technicolor Dark matter

  68. Technicolor and Technibaryon Dark Matter Minimal Walking Technicolor and (i)TIMPs LHC Phenomenology of MWT and (i)TIMPs Di-boson vs Higgs-strahlung q q W H Z , R 2 Z , R 1 W / Z W / Z q ¯ q ¯ Events/15 GeV S=0.3,s=0 M A = 700 GeV, M H =200 10 4 ~ =5 g Number of events/20 GeV @ 100 fb -1 S=0.3 pp → WH → WZZ 10 2 pp → ZH → ZZZ g ˜=5 10 3 pp → WZZ background pp → ZZZ background 10 10 2 1 10 -1 1 10 500 1000 1500 2000 400 600 800 1000 1200 M WZZ(ZZZ) (GeV) M T 3l (GeV) (Belyaev, Foadi, M.T.F, J¨ arvinen, Pukhov, Sannino 08) Mads Toudal Frandsen Technicolor Dark matter

  69. Symmetric vs Asymmetric TIMPs Can pNGB TIMPs have a symmetric relic density? Φ complex composite scalar with Yield and relic density in the presence of asymmetry: uncharged components ~ λ s motivated by achieving Minimality & Walking (Griest & Seckel 85) (Dynamical realization of scalar singlet DM models) α=0 Specific model example: 'Ultra Minimal TC' (Ryttov & Sannino 09) (Belyaev, M.T.F, Sarkar & Sannino 10)

  70. Symmetric vs Asymmetric TIMPs TIMPs with charged constituents Symmetric relic density of T 0 (Belyaev, M.T.F, Sarkar & Sannino 10) Higgs interactions of T 0 identical to those of φ α=0 T may also have charge radius interaction : In addition T 0 has contact interactions with SM gauge bosons, due to EW charges of U, D: (Preskill 81; Chadha and Peskin 81)

  71. Back to light ADM Most nuclear recoil experiments optimized to heavy WIMPs with little sensitivity to low mass particles O(keV) recoil energies Recently several experiments have reported events close to threshold Region of interest for Solar neutrinos (Schwetz @IDM 10) ~ 5 GeV Dark Matter candidates with ~10 -39 cm 2 spin-independent cross-section remains viable. Spin-dependent cross-sections up to 10 -36 cm 2

  72. Signatures of light ADM Similar to TIMPs light ADM may be a composite scalar or fermion Higgs exchange can naturally provide cross-section up to ~10 -41 Charge radius can provide ~10 -39 cm 2 cm 2 SI cross-sections Large SI and SD cross-sections of fermionic ADM can be realized via magnetic moment interactions (Sigurdson et al 2006, Gardner 08, Heo 09, Masso et al 09, An et al 10, Banks et al 10, Barger et al 10...) (Fit Courtesy of McCabe, M H =150 McCabe 10) Interesting LHC signatures like for TIMPs incl 'monojets' (Goodman et al 10, Bai, Fox & Harnik 10)

  73. Astrophysical aspects of light ADM Long range self-interactions are more tightly constrained by the 'Bullet cluster' (Feng, Kaplinghat and Yu 10)

Recommend


More recommend