Results of H2 VLE Simulations 23.10.2017, Marcel Rosenthal, Nikolaos Charitonidis, Yannis Karyotakis, Yiota Chatzidaki
Outline • Updates on Geometry • New optics • Definition of “ GoodParticles ” • Comparison of optics • Particle rates for 80 GeV/c secondaries • Particle rates for -80 GeV/c secondaries • Background Studies: • Beam in H2 • Beam in H4 • Electron Target Study 23.10.2017 M. Rosenthal 2
Geometry 23.10.2017 M. Rosenthal 3
Updates on Geometry • Complete setup of combined model of H2 and H4 More detailed models in VLE after tertiary target Default G4BL magnet models for both beamlines Upstream shielding of H4 around GIF. Thanks to our summer student Rachel Margraf Soil below floor for more realistic background estimation 23.10.2017 M. Rosenthal 4
Updates on Geometry • Complete setup of combined model of H2 and H4 More detailed models in VLE after tertiary target: Dipoles Quadrupoles Detailed shielding implemented for VLE section 23.10.2017 M. Rosenthal 5
Dipoles • Bending magnets • Shaped stainless-steel pipes • aligned to optimize acceptance • Iron yokes and copper coils • Magnetic field map 23.10.2017 M. Rosenthal 6
Quadrupoles • Quadrupoles • Round stainless-steel pipes • Iron yokes and copper coils • Magnetic field map extracted from HALO software • Increased gap/aperture compared to prior generic quad version • Pipe “serves” as obstacle/aperture limitation 23.10.2017 M. Rosenthal 7
Detectors param FieldCageWidth=6230 FieldCageLength=6230 FieldCageHeight=5880 • Detector param LArWidth=8548 LArLength=8548 LArHeight=7900 param ironPlateThickness=10 • 4(5) layers: param insulationThickness=798 • Membrane: Fe param membraneThickness=2 • Insulation: Air • IronPlate: Fe • DetectorVolumes: Vacuum 23.10.2017 M. Rosenthal 8
Pipes and Windows • Detailed pipe models in VLE section • Mylar windows 23.10.2017 M. Rosenthal 9
Shielding • Comparison with reality • Many details implemented from step files (Thanks to Sylvain Girod and Vincent Clerc) 23.10.2017 M. Rosenthal 10
Optics 23.10.2017 M. Rosenthal 11
Comparison of tracks • Original by Nikos • High transmission optimization by Yiota (increase by ≈ 3% in G4BL) y in mm x in mm 12 GeV/c “ GoodParticles ” z in mm z in mm Courtesy: Yiota Chatzidaki → see also previous talk 23.10.2017 M. Rosenthal 12
“ GoodParticle ” Definition 23.10.2017 M. Rosenthal 13
Schematic overview H2-VLE 23.10.2017 M. Rosenthal 14
Four explored Options • Option 1: same particle hits each detector (𝑱) • Detectors : TOF1, TRIG1, TRIG2 (𝑱𝑱) • Detectors : TOF1, TRIG1, TRIG2, BPROFs, COLL1, NP02front • Option 2: at least one 𝜌, 𝐿, 𝜈, 𝑓, 𝑞 hit in each detector (𝑱𝑱𝑱) • Detectors : TOF1, TRIG1, TRIG2 (𝑱𝑾) • Detectors : TOF1, TRIG1, TRIG2, BPROFs, COLL1, NP02front counted in option 1 & 2 only counted in option 2 23.10.2017 M. Rosenthal 15
𝝆 Composition 80 GeV/c → 12 GeV/c 𝑳 𝒒 𝝂 (𝑱𝑱) (𝑱) 𝒇 (𝑱𝑱𝑱) (𝑱𝑾) scored @ TRIG2 23.10.2017 M. Rosenthal 16
Momentum Spectra @ TRIG2 (𝑱) (𝑱𝑱𝑱) Timing not considered Momentum of all “ GoodParticles ” for different options 23.10.2017 M. Rosenthal 17
In-Beam Muon Origin a. u. (𝑱) (𝑱𝑱𝑱) Only muons before TOF1 are counted in this option 23.10.2017 M. Rosenthal 18
In-Beam Muon Origin vs. Momentum a. u. (𝑱) (𝑱𝑱𝑱) Taking into account decays in the GoodParticle definition allows for a more complete picture of the muon contribution 23.10.2017 M. Rosenthal 19
Four explored Options • Option 1: particle hits each detector (𝑱) • Detectors : TOF1, TRIG1, TRIG2 (𝑱𝑱) • Detectors : TOF1, TRIG1, TRIG2, BPROFs, COLL1, NP02front • Option 2: at least one 𝜌, 𝐿, 𝜈, 𝑓, 𝑞 hit in each detector (𝑱𝑱𝑱) • Detectors : TOF1, TRIG1, TRIG2 (𝑱𝑾) • Detectors : TOF1, TRIG1, TRIG2, BPROFs, COLL1, NP02front Following results obtained with selection scheme 3 (but no consideration of timing yet) 23.10.2017 M. Rosenthal 20
Rates for 80 GeV/c 23.10.2017 M. Rosenthal 21
Cu-target W-target Cu-target Pion Rate rate ± stat. error (fraction of GoodParticles) Physics list: FTFP_BERT Kin. energy cut: 10 MeV Scored at TRIG2 Selection scheme III Normalized to 10 6 in 4.8s 23.10.2017 M. Rosenthal 22
Cu-target W-target Cu-target Total Rate 𝒒 𝒇 𝝂 Physics list: FTFP_BERT 𝑳 𝝆 Kin. energy cut: 10 MeV Scored at TRIG2 Selection scheme III Normalized to 10 6 in 4.8s 23.10.2017 M. Rosenthal 23
Rates for -80 GeV/c 23.10.2017 M. Rosenthal 24
Cu-target W-target Cu-target Pion Rate Physics list: FTFP_BERT Kin. energy cut: 10 MeV Scored at TRIG2 Selection scheme III Normalized to 10 6 in 4.8s 23.10.2017 M. Rosenthal 25
Cu-target W-target Cu-target Total Rate 𝒒 𝒇 𝝂 𝑳 Physics list: FTFP_BERT 𝝆 Kin. energy cut: 10 MeV Scored at TRIG2 Selection scheme III Normalized to 10 6 in 4.8s 23.10.2017 M. Rosenthal 26
Background Studies 23.10.2017 M. Rosenthal 27
Full model: H2-beam on Particles scored in NP02 Fieldcage volume when H2 beam is on Detector materials currently vacuum: → Score all particles entering LAr volume in direction to field cage 23.10.2017 M. Rosenthal 28
Background Composition 12 GeV/c 23.10.2017 M. Rosenthal 29
Coordinates for NP02 • Study distribution of background z • Rotated cryostat • Project to new coordinates: 𝑦, 𝑨 → (𝑦, 𝑨) • x z x Beam 23.10.2017 M. Rosenthal 30
Background from Muons (12 GeV/c) a. u. 10 GeV/c 1 GeV/c 0.1 GeV/c Kinetic energy cutoff @ 10 MeV 23.10.2017 M. Rosenthal 31
Background from Neutrons (12 GeV/c) a. u. 10 GeV/c 1 GeV/c 0.1 GeV/c Kinetic energy cutoff @ 10 MeV 23.10.2017 M. Rosenthal 32
Muons & Neutrons 𝜈 𝑜 Target Momenta of VLE-magnets 23.10.2017 M. Rosenthal 33
Charged Particles 23.10.2017 M. Rosenthal 34
Full model: H4-beam on Particles scored in NP02 Fieldcage volume when H4 beam is on Detector materials currently vacuum: → Score all particles entering LAr volume in direction to field cage 23.10.2017 M. Rosenthal 35
Background Composition: 7 GeV/c (H4) 17 kHz of neutrons simulated for Vacuum (no LAr in detector volumes!) Is this an issue? Do we need additional shielding? 23.10.2017 M. Rosenthal 36
Background from Neutrons (7 GeV/c) a. u. 10 GeV/c 1 GeV/c 0.1 GeV/c Kinetic energy cutoff @ 10 MeV 23.10.2017 M. Rosenthal 37
Background from Muons (7 GeV/c) a. u. 10 GeV/c 1 GeV/c 0.1 GeV/c Kinetic energy cutoff @ 10 MeV 23.10.2017 M. Rosenthal 38
Effect of beam pipes 23.10.2017 M. Rosenthal 39
𝝆 Composition / 80 GeV/c → 1/12 GeV/c 𝑳 𝒒 𝝂 (𝑱𝑱𝑱) (𝑱𝑱𝑱) 𝒇 Vacuum Steel 1GeV/c 1GeV/c (𝑱𝑱𝑱) (𝑱𝑱𝑱) Vacuum Steel 12GeV/c 12GeV/c 23.10.2017 M. Rosenthal 40
Electron Target Study 23.10.2017 M. Rosenthal 41
Study of 𝒇 + beam in H2-VLE • 60 GeV/c momentum of secondary beam • Very conservative: 90% positrons, 10% charged hadrons mixed in • Explore lead target as secondary target • Thicknesses: 5 to 30 mm • Tertiary Momenta: 1, 4, 8, 12 GeV/c • Radiation length of Pb ≈ 5 mm • After 1, 2, 3, 4, 5 𝑌 0 : ≈ 22, 8, 3, 1, 0.4 GeV/c • Expectation: Optimum between 10 to 20 mm depending on tertiary momentum 23.10.2017 M. Rosenthal 42
𝒇 + -rate for 𝟐𝟏 𝟕 secondaries in 4.8 s 1 GeV/c 4 GeV/c • Expectation confirmed 16 kHz 16 kHz • Optimum at 10-15 mm (one target used at all tertiary momenta) • Rate of “Good Particles”: 8 GeV/c 12 GeV/c • 10 - 20 kHz 12 kHz 10 kHz • Purity of “Good Particles ”: • ≈ 100% electrons Target length (mm) Target length (mm) 23.10.2017 M. Rosenthal 43
Summary • Detailed, combined model for H2 and H4 with VLE extensions implemented • New estimates of the trigger rates available for H2-VLE • Rate increase due to more realistic quadrupoles with larger apertures is compensated by implementing beam pipes • nTuples for H2 will be made available on shared beamgroupdisk this week (/eos/experiments/neutplatform/protodune/npmcproddisk/beamgroupdisk/DP/v27c/) • Old GoodParticle definition inside! • H4-VLE estimations will follow soon after implementing the new Quay model • Electron/Positron yield using a lead target has been estimated • Multiple kHz for a 10-15 mm lead target at all momenta 23.10.2017 M. Rosenthal 44
Recommend
More recommend