analytic left inversion of multivariable
play

Analytic Left Inversion of Multivariable LotkaVolterra Models W. - PowerPoint PPT Presentation

Analytic Left Inversion of Multivariable LotkaVolterra Models W. Steven Gray Mathematical Perspectives in Biology Madrid, Spain February 5, 2016 Joint work with Luis A. Duffaut Espinosa (GMU) and Kurusch Ebrahimi-Fard (ICMAT)


  1. Analytic Left Inversion of Multivariable Lotka–Volterra Models α W. Steven Gray β Mathematical Perspectives in Biology Madrid, Spain February 5, 2016 β Joint work with Luis A. Duffaut Espinosa (GMU) and Kurusch Ebrahimi-Fard (ICMAT) α Research supported by the BBVA Foundation Grant to Researchers, Innovators and Cultural Creators (Spain). W. S. Gray February 5, 2016 – ICMAT

  2. Problem Trajectory Generation Problem : explicitly compute the input to drive a nonlinear system to produce some desired output. • Fliess operators : F c : u �→ y are analytic multivariable input-output maps, which are described by coefficients ( c, η ) and corresponding iterated integrals (M. Fliess, 1983). • Left inversion problem : given a multivariable Fliess operator F c and a function y in its range, determine an input u such that y = F c [ u ] . • Hopf algebra antipode : group ( G, ◦ ) of unital Fliess operators and its corresponding Hopf algebra H of coordinate functions; G ∋ F ◦− 1 = F c ◦ S , S : H → H c S ⋆ id = id ⋆ S = ǫ z i = β i z i + � n • Lotka–Volterra Model : ˙ j =1 α ij z i z j , i = 1 , 2 , . . . , n Input-Output systems are obtained by introducing time dependence on the parameters β i ( t ) and α ij ( t ) (inputs u k ) , and assuming that y = h ( z ) (outputs y = F c [ u ] ) . W. S. Gray February 5, 2016 – ICMAT 1

  3. Setting Fliess operator � y = F c [ u ]( t, t 0 ) = ( c, η ) E η [ u ]( t, t 0 ) η ∈ X ∗ X = { x 0 , x 1 , . . . , x m } alphabet: c := � η ∈ R ℓ �� X �� system: η ∈ X ∗ ( c, η ) � �� � ∈ R ℓ u : [ t 0 , t 1 ] → R m , controls: u 0 := 1 � t E xi ¯ η [ u ]( t, t 0 ) = u i ( s ) E ¯ η [ u ]( s, t 0 ) ds x i ← → u i t 0 E ∅ [ u ] := 1 W. S. Gray February 5, 2016 – ICMAT 2

  4. System interconnections I F c u y × F d product connection: F c F d = F c ⊔ ⊔ d F c u y + F d parallel connection: F c + F d = F c + d W. S. Gray February 5, 2016 – ICMAT 3

  5. System interconnections II Cascade connection v u F d F c y d := � ( d, η ) ∈ R m , d 0 := 1 η ∈ X ∗ ( d, η ) η, � � � ( F c ◦ F d )[ u ]( t, t 0 ) = ( c, η ) E η F d [ u ] ( t, t 0 ) η ∈ X ∗ � t E xi ¯ η [ F d [ u ]]( t, t 0 ) = F di [ u ]( s, t 0 ) E ¯ η [ F d [ u ]]( s, t 0 ) ds t 0 x i η ◦ ′ d := x 0 ⊔ ( η ◦ ′ d ) � � ( F c ◦ F d )[ u ] = F c ◦′ d [ u ] d i ⊔ W. S. Gray February 5, 2016 – ICMAT 4

  6. System interconnections III Feedback loop v u y F c v = u + F d ◦′ c [ v ] F c • d [ u ] = F c ◦′ ( ǫ − d ◦′ c ) ◦− 1 [ u ] F d Involves an extension of Fliess operators: unital Fliess operators F cǫ [ u ] := u + F c [ u ] = ( I + F c )[ u ] c ǫ := ǫ + c F cǫ ◦ F dǫ [ u ] = F cǫ ◦ dǫ [ u ] This composition defines a group ( G, ◦ ) with unit ǫ on R �� X ǫ �� [G-DE]. W. S. Gray February 5, 2016 – ICMAT 5

  7. Coordinate functions I Fa` a di Bruno type Hopf algebra a i η : G → R , a i η ( c ǫ ) := � c ǫ , a i η � = ( c ǫ , η ) i ∈ R Coordinate functions: � c ǫ ◦ d ǫ , a i � c ǫ ⊗ d ǫ , ∆( a i η � η ) � = � a i η ′ ⊗ a j � c ǫ ⊗ d ǫ , η ′′ � = ( η ) Theorem : Coordinate functions form a connected graded commutative non-cocommutative Hopf algebra ( H, ∆ , ǫ, S, m, ι ) . � c ◦− 1 , a i η � = � c ǫ , S ( a i S : H → H η ) � Antipode : ǫ � ′ � ′ S ( a i η ) = − a i S ( a i η ′ ) a j η ′′ = − a i a i η ′ S ( a j η − η − η ′′ ) ( η ) ( η ) W. S. Gray February 5, 2016 – ICMAT 6

  8. Coordinate functions II Coproduct and antipode calculations ∆ : H → H ⊗ H S : H → H ∆( a i ∅ ) = a i ∅ ⊗ 1 + 1 ⊗ a i S ( a i ∅ ) = − a i ∅ ∅ ∆( a i xj ) = a i xj ⊗ 1 + 1 ⊗ a i S ( a i xj ) = − a i xj xj ∆( a i x 0 ) = a i x 0 ⊗ 1 + 1 ⊗ a i x 0 + a i xℓ ⊗ a ℓ S ( a i x 0 ) = − a i x 0 + a i xℓ a ℓ ∅ ∅ ∆( a i xjxk ) = a i xjxk ⊗ 1 + 1 ⊗ a i S ( a i xjxk ) = − a i xjxk xjxk � c ǫ ◦ d ǫ , a i � c ◦− 1 , a i xjxk � = ( c ◦− 1 xjxk � = ( c ǫ ◦ d ǫ , x j x k ) i , x j x k ) i ǫ ǫ = a i x 0 ( c ǫ ) + a i x 0 ( d ǫ ) + a i xℓ ( c ǫ ) a ℓ = − a i x 0 ( c ǫ ) + a i xℓ ( c ǫ ) a ℓ ∅ ( d ǫ ) ∅ ( c ǫ ) = ( c ǫ , x 0 ) i + ( d ǫ , x 0 ) i + ( c ǫ , x ℓ ) i ( d ǫ , ∅ ) ℓ = − ( c ǫ , x 0 ) i + ( c ǫ , x ℓ ) i ( c ǫ , ∅ ) ℓ W. S. Gray February 5, 2016 – ICMAT 7

  9. Left Inversion of MIMO Fliess operators I Observe: c ∈ R �� X �� can be written as c = c N + c F , where c N := � k ≥ 0 ( c, x k 0 ) x k 0 and c F := c − c N . Definition : Given c ∈ R k �� X �� , let r i ≥ 1 be the largest integer such that supp( c F,i ) ⊆ ri − 1 ri − 1 X ∗ , i = 1 , 2 , . . . , m . Then c i has relative degree r i if x x j ∈ supp( c i ) , for x 0 0 j ∈ { 1 , . . . , m } , otherwise it is not well defined. In addition, c has vector relative degree r = [ r 1 r 2 · · · r m ] if each c i has relative degree r i and the m × m matrix   ( c 1 , x r 1 − 1 ( c 1 , x r 1 − 1 ( c 1 , x r 1 − 1 x 1 ) x 2 ) · · · x m ) 0 0 0 . . . . A = . . . .   . . . . ( c m , x rm − 1 ( c m , x rm − 1 ( c m , x rm − 1 x 1 ) x 2 ) · · · x m ) 0 0 0 has full rank. Otherwise, c does not have vector relative degree. This definition coincides with the usual definition of relative degree given in a state space setting. But this definition is independent of the state space setting. W. S. Gray February 5, 2016 – ICMAT 8

  10. Left Inversion of MIMO Fliess operators II Lemma : The set of series R m × m �� X �� having invertible constant terms is a group under the shuffle product. In particular, the shuffle inverse of any such series C is ⊔ − 1 = (( C, ∅ )( I − C ′ )) ⊔ ⊔ − 1 = ( C, ∅ ) − 1 ( C ′ ) ⊔ C ⊔ ⊔ ∗ , where C ′ = I − ( C, ∅ ) − 1 C is proper, i.e., ( C ′ , ∅ ) = 0 , and ( C ′ ) ⊔ ⊔ ∗ := � k ≥ 0 ( C ′ ) ⊔ ⊔ k . For any C ∈ R m × m �� X �� with an invertible constant term, F C , which is Lemma : defined componentwise by [ F C ] i,j = F Ci,j , has a well defined multiplicative inverse given by ( F C ) − 1 = F C ⊔ ⊔ − 1 . Let R [[ X 0 ]] be all commutative series over X 0 := { x 0 } . When c ∈ R [[ X 0 ]] , Notation: F c [ u ]( t ) = � 0 [ u ]( t ) = � k ≥ 0 ( c, x k k ≥ 0 ( c, x k 0 ) t k /k ! . 0 ) E xk W. S. Gray February 5, 2016 – ICMAT 9

  11. Left Inversion of MIMO Fliess operators III y ( r ) = F ( xr 0) − 1( c ) [ u ] + F C [ u ] u ∈ R m � u = − ( F C [ u ]) − 1 F ( xr ( c y , x k 0 ) t k /k ! 0) − 1( c − cy ) [ u ] , y ( t ) = F cy [ u ]( t ) = k ≥ 0 d = C ⊔ ⊔ − 1 ⊔ ⊔ ( x r 0 ) − 1 ( c − c y ) u = − F d [ u ] , ri − 1 ri ( x r 0 ) − 1 ( c − c y ) i = ( x 0 ) − 1 ( c i − c yi ) and C i,j = ( x x j ) − 1 ( c i ) 0 Theorem : Suppose c ∈ R m �� X �� has vector relative degree r . Let y be analytic at t = 0 ∗ LC �� X �� satisfying ( c y , x ( r ) = ( c, x ( r ) with generating series c y ∈ R m 0 ) 0 ) . Then the input ∞ 0 ) t k � c u = (( C ⊔ ⊔ − 1 ⊔ 0 ) − 1 ( c − c y )) ◦− 1 ) | N , ( c u , x k ⊔ ( x r u ( t ) = with k ! k =0 is the unique solution to F c [ u ] = y on [0 , T ] for some T > 0 . Note: the condition ∗ on c y ensures that y is in the range of F c . W. S. Gray February 5, 2016 – ICMAT 10

  12. Multivariable I/O Lotka–Volterra Models I z i = β i z i + � n ˙ j =1 α ij z i z j , i = 1 , 2 , . . . , n     z 1 ˙ β 1 z 1 − α 12 z 1 z 2  = z 2 ˙ − β 2 z 2 + α 21 z 1 z 2 − α 23 z 2 z 3 2 Predators - 1 Prey    z 3 ˙ − β 3 z 3 + α 32 z 3 z 2 The systems within the first octant have: • periodic orbits around ( β 2 /α 21 , β 1 /α 12 , 0) if β 1 α 32 = β 3 α 12 • extinction of one population if β 1 α 32 < β 3 α 12 • unbounded growing if β 1 α 32 > β 3 α 12 . ANSATZ: Input-output models are obtained by introducing time dependence on the parameters β i ( t ) ’s or α ij ( t ) ’s (inputs), and assuming y = h ( z ) (outputs) . W. S. Gray February 5, 2016 – ICMAT 11

  13. Multivariable I/O Lotka–Volterra Models II Vector relative degree r for three LV systems with y 1 = z 2 and y 2 = z 3 : I/O map r range restrictions � β 1 � y 1 � � F c : �→ not defined – β 2 y 2 � β 2 � y 1 � � ( c y 1 , ∅ ) = ( c 1 , ∅ ) �→ F c : [1 1] β 3 y 2 ( c y 2 , ∅ ) = ( c 2 , ∅ ) ( c y 1 , ∅ ) = ( c 1 , ∅ ) � β 1 � y 1 � � [2 1] F c : �→ ( c y 1 , x 0 ) = ( c 1 , x 0 ) β 3 y 2 (full) ( c y 2 , ∅ ) = ( c 2 , ∅ ) Consider case 2: r = [1 1] , u 1 := β 2 , u 2 := β 3         β 1 z 1 − α 12 z 1 z 2 z 1 ˙ 0 0 � y 1 � � z 2 �  =  −  u 1 −  u 2 , α 21 z 1 z 2 − α 23 z 2 z 3 = z 2 ˙ z 2 0     y 2 z 3 z 3 ˙ α 32 z 3 z 2 0 z 3 with z i (0) = z i, 0 > 0 , i = 1 , 2 , 3 . Normalizing all parameters to 1 . W. S. Gray February 5, 2016 – ICMAT 12

Recommend


More recommend