multivariable puiseux theorem for convergent generalised
play

Multivariable Puiseux Theorem for Convergent Generalised Power - PowerPoint PPT Presentation

Multivariable Puiseux Theorem for Convergent Generalised Power Series Tamara Servi (CMAF Lisboa) Multivariable Puiseux Theorem for Convergent Generalised Power Series Tamara Servi (CMAF Lisboa) This talk is about solving equations in a class


  1. The ring of formal generalised power series R � x ∗ � . Let x = ( x 1 , . . . , x m ) . α c α x α such that α ∈ [ 0 , ∞ ) m , c α ∈ R and F ( x ) = � Supp ( F ) := { α : c α � = 0 }⊆ S 1 × . . . × S m , where S i ⊆ [ 0 , ∞ ) well ordered. ( F has finitely many minimal monomials) α | c α | r | α | < ∞ (sup of all finite subsums). F convergent if ∃ r ∈ ( 0 , ∞ ) m � F induces a C 0 function (the sum of the series) on [ 0 , r ) m (analytic on ( 0 , r ) m ). R { x ∗ } = � r R { x ∗ } r is the ring of convergent generalised power series . Examples. • f ∈ O m , α i ∈ [ 0 , ∞ ); F ( x ) = f ( x α 1 1 , . . . , x α m m ) . Supp ( F ) ⊆ α 1 N × . . . × α m N .

  2. The ring of formal generalised power series R � x ∗ � . Let x = ( x 1 , . . . , x m ) . α c α x α such that α ∈ [ 0 , ∞ ) m , c α ∈ R and F ( x ) = � Supp ( F ) := { α : c α � = 0 }⊆ S 1 × . . . × S m , where S i ⊆ [ 0 , ∞ ) well ordered. ( F has finitely many minimal monomials) α | c α | r | α | < ∞ (sup of all finite subsums). F convergent if ∃ r ∈ ( 0 , ∞ ) m � F induces a C 0 function (the sum of the series) on [ 0 , r ) m (analytic on ( 0 , r ) m ). R { x ∗ } = � r R { x ∗ } r is the ring of convergent generalised power series . Examples. • f ∈ O m , α i ∈ [ 0 , ∞ ); F ( x ) = f ( x α 1 1 , . . . , x α m m ) . Supp ( F ) ⊆ α 1 N × . . . × α m N . n x log n (Riemann’s ζ ). • F ( x ) = ζ ( − log x )= �

  3. The ring of formal generalised power series R � x ∗ � . Let x = ( x 1 , . . . , x m ) . α c α x α such that α ∈ [ 0 , ∞ ) m , c α ∈ R and F ( x ) = � Supp ( F ) := { α : c α � = 0 }⊆ S 1 × . . . × S m , where S i ⊆ [ 0 , ∞ ) well ordered. ( F has finitely many minimal monomials) α | c α | r | α | < ∞ (sup of all finite subsums). F convergent if ∃ r ∈ ( 0 , ∞ ) m � F induces a C 0 function (the sum of the series) on [ 0 , r ) m (analytic on ( 0 , r ) m ). R { x ∗ } = � r R { x ∗ } r is the ring of convergent generalised power series . Examples. • f ∈ O m , α i ∈ [ 0 , ∞ ); F ( x ) = f ( x α 1 1 , . . . , x α m m ) . Supp ( F ) ⊆ α 1 N × . . . × α m N . n x log n (Riemann’s ζ ). Supp ( F ) = { log n } n ∈ N ր + ∞ . • F ( x ) = ζ ( − log x )= �

  4. The ring of formal generalised power series R � x ∗ � . Let x = ( x 1 , . . . , x m ) . α c α x α such that α ∈ [ 0 , ∞ ) m , c α ∈ R and F ( x ) = � Supp ( F ) := { α : c α � = 0 }⊆ S 1 × . . . × S m , where S i ⊆ [ 0 , ∞ ) well ordered. ( F has finitely many minimal monomials) α | c α | r | α | < ∞ (sup of all finite subsums). F convergent if ∃ r ∈ ( 0 , ∞ ) m � F induces a C 0 function (the sum of the series) on [ 0 , r ) m (analytic on ( 0 , r ) m ). R { x ∗ } = � r R { x ∗ } r is the ring of convergent generalised power series . Examples. • f ∈ O m , α i ∈ [ 0 , ∞ ); F ( x ) = f ( x α 1 1 , . . . , x α m m ) . Supp ( F ) ⊆ α 1 N × . . . × α m N . n x log n (Riemann’s ζ ). Supp ( F ) = { log n } n ∈ N ր + ∞ . • F ( x ) = ζ ( − log x )= � ∞ 2 + n − 1 � 1 • F ( x ) = 2 i x 2 i n , i = 0

  5. The ring of formal generalised power series R � x ∗ � . Let x = ( x 1 , . . . , x m ) . α c α x α such that α ∈ [ 0 , ∞ ) m , c α ∈ R and F ( x ) = � Supp ( F ) := { α : c α � = 0 }⊆ S 1 × . . . × S m , where S i ⊆ [ 0 , ∞ ) well ordered. ( F has finitely many minimal monomials) α | c α | r | α | < ∞ (sup of all finite subsums). F convergent if ∃ r ∈ ( 0 , ∞ ) m � F induces a C 0 function (the sum of the series) on [ 0 , r ) m (analytic on ( 0 , r ) m ). R { x ∗ } = � r R { x ∗ } r is the ring of convergent generalised power series . Examples. • f ∈ O m , α i ∈ [ 0 , ∞ ); F ( x ) = f ( x α 1 1 , . . . , x α m m ) . Supp ( F ) ⊆ α 1 N × . . . × α m N . n x log n (Riemann’s ζ ). Supp ( F ) = { log n } n ∈ N ր + ∞ . • F ( x ) = ζ ( − log x )= � ∞ 1 − √ x � √ x 2 + n − 1 � 2 i , solution of ( 1 − x ) F ( x ) = x + 1 1 � � � • F ( x ) = 2 i x 2 x F . n , i = 0

  6. The ring of formal generalised power series R � x ∗ � . Let x = ( x 1 , . . . , x m ) . α c α x α such that α ∈ [ 0 , ∞ ) m , c α ∈ R and F ( x ) = � Supp ( F ) := { α : c α � = 0 }⊆ S 1 × . . . × S m , where S i ⊆ [ 0 , ∞ ) well ordered. ( F has finitely many minimal monomials) α | c α | r | α | < ∞ (sup of all finite subsums). F convergent if ∃ r ∈ ( 0 , ∞ ) m � F induces a C 0 function (the sum of the series) on [ 0 , r ) m (analytic on ( 0 , r ) m ). R { x ∗ } = � r R { x ∗ } r is the ring of convergent generalised power series . Examples. • f ∈ O m , α i ∈ [ 0 , ∞ ); F ( x ) = f ( x α 1 1 , . . . , x α m m ) . Supp ( F ) ⊆ α 1 N × . . . × α m N . n x log n (Riemann’s ζ ). Supp ( F ) = { log n } n ∈ N ր + ∞ . • F ( x ) = ζ ( − log x )= � ∞ 1 − √ x � √ x 2 + n − 1 � 2 i , solution of ( 1 − x ) F ( x ) = x + 1 1 � � � • F ( x ) = 2 i x 2 x F . n , i = 0 1 2 3 4 5 6

  7. The ring of formal generalised power series R � x ∗ � . Let x = ( x 1 , . . . , x m ) . α c α x α such that α ∈ [ 0 , ∞ ) m , c α ∈ R and F ( x ) = � Supp ( F ) := { α : c α � = 0 }⊆ S 1 × . . . × S m , where S i ⊆ [ 0 , ∞ ) well ordered. ( F has finitely many minimal monomials) α | c α | r | α | < ∞ (sup of all finite subsums). F convergent if ∃ r ∈ ( 0 , ∞ ) m � F induces a C 0 function (the sum of the series) on [ 0 , r ) m (analytic on ( 0 , r ) m ). R { x ∗ } = � r R { x ∗ } r is the ring of convergent generalised power series . Examples. • f ∈ O m , α i ∈ [ 0 , ∞ ); F ( x ) = f ( x α 1 1 , . . . , x α m m ) . Supp ( F ) ⊆ α 1 N × . . . × α m N . n x log n (Riemann’s ζ ). Supp ( F ) = { log n } n ∈ N ր + ∞ . • F ( x ) = ζ ( − log x )= � ∞ 1 − √ x � √ x 2 + n − 1 � 2 i , solution of ( 1 − x ) F ( x ) = x + 1 1 � � � • F ( x ) = 2 i x 2 x F . n , i = 0 1 2 3 4 5 6 Theorem (vdDries-Speissegger, ’98). R { x ∗ } generates a polynomially bounded o-minimal expansion R an ∗ of R an .

  8. Our main result

  9. Our main result � R { x ∗ 1 , . . . , x ∗ x �→ 1 � � Definition. A = m } ∪ x m ∈ N

  10. Our main result � R { x ∗ 1 , . . . , x ∗ x �→ 1 � � Definition. A = m } ∪ x m ∈ N An A -cell is a cell such that the defining functions are A -terms.

  11. Our main result � R { x ∗ 1 , . . . , x ∗ x �→ 1 � � Definition. A = m } ∪ x m ∈ N An A -cell is a cell such that the defining functions are A -terms. THEOREM. x = ( x 1 , . . . , x m ) , r ∈ ( 0 , ∞ ) , f ∈ R { x ∗ , y ∗ } r with f ( 0 , 0 ) = 0.

  12. Our main result � R { x ∗ 1 , . . . , x ∗ x �→ 1 � � Definition. A = m } ∪ x m ∈ N An A -cell is a cell such that the defining functions are A -terms. THEOREM. x = ( x 1 , . . . , x m ) , r ∈ ( 0 , ∞ ) , f ∈ R { x ∗ , y ∗ } r with f ( 0 , 0 ) = 0. Then, ∃ W ⊆ R m + 1 nbd of 0 and ∃ an A -cell decomposition of W ∩ [ 0 , r ) m + 1

  13. Our main result � R { x ∗ 1 , . . . , x ∗ x �→ 1 � � Definition. A = m } ∪ x m ∈ N An A -cell is a cell such that the defining functions are A -terms. THEOREM. x = ( x 1 , . . . , x m ) , r ∈ ( 0 , ∞ ) , f ∈ R { x ∗ , y ∗ } r with f ( 0 , 0 ) = 0. Then, ∃ W ⊆ R m + 1 nbd of 0 and ∃ an A -cell decomposition of W ∩ [ 0 , r ) m + 1 ( x , y ) ∈ [ 0 , r ) m + 1 : f ( x , y ) = 0 � � which is compatible with .

  14. Our main result � R { x ∗ 1 , . . . , x ∗ x �→ 1 � � Definition. A = m } ∪ x m ∈ N An A -cell is a cell such that the defining functions are A -terms. THEOREM. x = ( x 1 , . . . , x m ) , r ∈ ( 0 , ∞ ) , f ∈ R { x ∗ , y ∗ } r with f ( 0 , 0 ) = 0. Then, ∃ W ⊆ R m + 1 nbd of 0 and ∃ an A -cell decomposition of W ∩ [ 0 , r ) m + 1 ( x , y ) ∈ [ 0 , r ) m + 1 : f ( x , y ) = 0 � � which is compatible with . y f = 0 W f = 0 f < 0 f < 0 f < 0 f > 0 x

  15. Our main result � R { x ∗ 1 , . . . , x ∗ x �→ 1 � � Definition. A = m } ∪ x m ∈ N An A -cell is a cell such that the defining functions are A -terms. THEOREM. x = ( x 1 , . . . , x m ) , r ∈ ( 0 , ∞ ) , f ∈ R { x ∗ , y ∗ } r with f ( 0 , 0 ) = 0. Then, ∃ W ⊆ R m + 1 nbd of 0 and ∃ an A -cell decomposition of W ∩ [ 0 , r ) m + 1 ( x , y ) ∈ [ 0 , r ) m + 1 : f ( x , y ) = 0 � � which is compatible with . y f = 0 W f = 0 f < 0 f < 0 f < 0 f > 0 x In particular, the solutions of f = 0 are of the form y = ϕ ( x ) , where ϕ : C → R is an A -term and C ⊆ R m is an A -cell.

  16. Strategy of proof

  17. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that:

  18. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ;

  19. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ; 2) ∃ W ⊆ R m + 1 nbd of 0 such that W ∩ [ 0 , r ) m + 1 = � [ 0 , ε ) m + 1 � � ρ ∈F ρ ;

  20. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ; 2) ∃ W ⊆ R m + 1 nbd of 0 such that W ∩ [ 0 , r ) m + 1 = � [ 0 , ε ) m + 1 � � ρ ∈F ρ ; 3) f ◦ ρ = X α Y β U ( X , Y ) for some ( α, β ) ∈ [ 0 , ∞ ) m + 1 , U ∈ R { X ∗ , Y ∗ } × ( monomialised form )

  21. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ; 2) ∃ W ⊆ R m + 1 nbd of 0 such that W ∩ [ 0 , r ) m + 1 = � [ 0 , ε ) m + 1 � � ρ ∈F ρ ; 3) f ◦ ρ = X α Y β U ( X , Y ) for some ( α, β ) ∈ [ 0 , ∞ ) m + 1 , U ∈ R { X ∗ , Y ∗ } × ( monomialised form ), so f ◦ ρ = 0 has only trivial solutions;

  22. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ; 2) ∃ W ⊆ R m + 1 nbd of 0 such that W ∩ [ 0 , r ) m + 1 = � [ 0 , ε ) m + 1 � � ρ ∈F ρ ; 3) f ◦ ρ = X α Y β U ( X , Y ) for some ( α, β ) ∈ [ 0 , ∞ ) m + 1 , U ∈ R { X ∗ , Y ∗ } × ( monomialised form ), so f ◦ ρ = 0 has only trivial solutions; 4) ρ respects y:

  23. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ; 2) ∃ W ⊆ R m + 1 nbd of 0 such that W ∩ [ 0 , r ) m + 1 = � [ 0 , ε ) m + 1 � � ρ ∈F ρ ; 3) f ◦ ρ = X α Y β U ( X , Y ) for some ( α, β ) ∈ [ 0 , ∞ ) m + 1 , U ∈ R { X ∗ , Y ∗ } × ( monomialised form ), so f ◦ ρ = 0 has only trivial solutions; 4) ρ respects y: • ρ 0 does not depend on Y , so ρ 0 : [ 0 , ε ) m ∋ X �→ x ∈ [ 0 , r ) m ;

  24. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ; 2) ∃ W ⊆ R m + 1 nbd of 0 such that W ∩ [ 0 , r ) m + 1 = � [ 0 , ε ) m + 1 � � ρ ∈F ρ ; 3) f ◦ ρ = X α Y β U ( X , Y ) for some ( α, β ) ∈ [ 0 , ∞ ) m + 1 , U ∈ R { X ∗ , Y ∗ } × ( monomialised form ), so f ◦ ρ = 0 has only trivial solutions; 4) ρ respects y: • ρ 0 does not depend on Y , so ρ 0 : [ 0 , ε ) m ∋ X �→ x ∈ [ 0 , r ) m ; • ρ 0 is bijective outside a small set and the components of ρ − 1 are A -terms; 0

  25. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ; 2) ∃ W ⊆ R m + 1 nbd of 0 such that W ∩ [ 0 , r ) m + 1 = � [ 0 , ε ) m + 1 � � ρ ∈F ρ ; 3) f ◦ ρ = X α Y β U ( X , Y ) for some ( α, β ) ∈ [ 0 , ∞ ) m + 1 , U ∈ R { X ∗ , Y ∗ } × ( monomialised form ), so f ◦ ρ = 0 has only trivial solutions; 4) ρ respects y: • ρ 0 does not depend on Y , so ρ 0 : [ 0 , ε ) m ∋ X �→ x ∈ [ 0 , r ) m ; • ρ 0 is bijective outside a small set and the components of ρ − 1 are A -terms; 0 • ρ 1 ( X , · ) : Y �→ y is monotonic for almost all X .

  26. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ; 2) ∃ W ⊆ R m + 1 nbd of 0 such that W ∩ [ 0 , r ) m + 1 = � [ 0 , ε ) m + 1 � � ρ ∈F ρ ; 3) f ◦ ρ = X α Y β U ( X , Y ) for some ( α, β ) ∈ [ 0 , ∞ ) m + 1 , U ∈ R { X ∗ , Y ∗ } × ( monomialised form ), so f ◦ ρ = 0 has only trivial solutions; 4) ρ respects y: • ρ 0 does not depend on Y , so ρ 0 : [ 0 , ε ) m ∋ X �→ x ∈ [ 0 , r ) m ; • ρ 0 is bijective outside a small set and the components of ρ − 1 are A -terms; 0 • ρ 1 ( X , · ) : Y �→ y is monotonic for almost all X . Remark. The existence of a family F satisfying 1,2,3 is well known (see [Rol.-Sanz-Vill.; Rol.-S.’13], inspired by [vdDr.-Speis.’98; Rol.-Speis.-Wil.’03]).

  27. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ; 2) ∃ W ⊆ R m + 1 nbd of 0 such that W ∩ [ 0 , r ) m + 1 = � [ 0 , ε ) m + 1 � � ρ ∈F ρ ; 3) f ◦ ρ = X α Y β U ( X , Y ) for some ( α, β ) ∈ [ 0 , ∞ ) m + 1 , U ∈ R { X ∗ , Y ∗ } × ( monomialised form ), so f ◦ ρ = 0 has only trivial solutions; 4) ρ respects y: • ρ 0 does not depend on Y , so ρ 0 : [ 0 , ε ) m ∋ X �→ x ∈ [ 0 , r ) m ; • ρ 0 is bijective outside a small set and the components of ρ − 1 are A -terms; 0 • ρ 1 ( X , · ) : Y �→ y is monotonic for almost all X . Remark. The existence of a family F satisfying 1,2,3 is well known (see [Rol.-Sanz-Vill.; Rol.-S.’13], inspired by [vdDr.-Speis.’98; Rol.-Speis.-Wil.’03]). The monomialising tools ( admissible transformations ) are essentially blow-ups with real exponents and translations by elements of R { x ∗ } .

  28. Strategy of proof Find a finite family F of vertical admissible transformations [ 0 , ε ) m + 1 [ 0 , r ) m + 1 ρ : − → ( X , Y ) �− → ( x , y ) = ( ρ 0 ( X , Y ) , ρ 1 ( X , Y )) such that: 1) f ◦ ρ ∈ R { X ∗ , Y ∗ } ε ; 2) ∃ W ⊆ R m + 1 nbd of 0 such that W ∩ [ 0 , r ) m + 1 = � [ 0 , ε ) m + 1 � � ρ ∈F ρ ; 3) f ◦ ρ = X α Y β U ( X , Y ) for some ( α, β ) ∈ [ 0 , ∞ ) m + 1 , U ∈ R { X ∗ , Y ∗ } × ( monomialised form ), so f ◦ ρ = 0 has only trivial solutions; 4) ρ respects y: • ρ 0 does not depend on Y , so ρ 0 : [ 0 , ε ) m ∋ X �→ x ∈ [ 0 , r ) m ; • ρ 0 is bijective outside a small set and the components of ρ − 1 are A -terms; 0 • ρ 1 ( X , · ) : Y �→ y is monotonic for almost all X . Remark. The existence of a family F satisfying 1,2,3 is well known (see [Rol.-Sanz-Vill.; Rol.-S.’13], inspired by [vdDr.-Speis.’98; Rol.-Speis.-Wil.’03]). The monomialising tools ( admissible transformations ) are essentially blow-ups with real exponents and translations by elements of R { x ∗ } . The novelty here lies in 4, which allows to solve f = 0 ( verticality ).

  29. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) .

  30. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1

  31. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q .

  32. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q . Then so does f on ρ ( Q ) .

  33. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q . Then so does f on ρ ( Q ) . So, it is enough to show that ρ ( Q ) is a finite disjoint union of A -cells.

  34. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q . Then so does f on ρ ( Q ) . So, it is enough to show that ρ ( Q ) is a finite disjoint union of A -cells. By verticality, ρ 0 is invertible and ρ 1 ( X , · ) is monotonic, outside a small-dimensional set

  35. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q . Then so does f on ρ ( Q ) . So, it is enough to show that ρ ( Q ) is a finite disjoint union of A -cells. By verticality, ρ 0 is invertible and ρ 1 ( X , · ) is monotonic, outside a small-dimensional set (wlog, an A -cell, by induction on the dimension).

  36. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q . Then so does f on ρ ( Q ) . So, it is enough to show that ρ ( Q ) is a finite disjoint union of A -cells. By verticality, ρ 0 is invertible and ρ 1 ( X , · ) is monotonic, outside a small-dimensional set (wlog, an A -cell, by induction on the dimension). Hence, it is enough to prove: A ⊆ R m + 1 A -cell and ρ ↾ A as above ⇒ ρ ( A ) is a fin. disj. union of A -cells.

  37. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q . Then so does f on ρ ( Q ) . So, it is enough to show that ρ ( Q ) is a finite disjoint union of A -cells. By verticality, ρ 0 is invertible and ρ 1 ( X , · ) is monotonic, outside a small-dimensional set (wlog, an A -cell, by induction on the dimension). Hence, it is enough to prove: A ⊆ R m + 1 A -cell and ρ ↾ A as above ⇒ ρ ( A ) is a fin. disj. union of A -cells. Wlog, A = { ( X , Y ) : X ∈ C , Y ∗ t ( X ) } , with C ⊆ R m A -cell, ∗ ∈ { = , < } and t : C → R A -term.

  38. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q . Then so does f on ρ ( Q ) . So, it is enough to show that ρ ( Q ) is a finite disjoint union of A -cells. By verticality, ρ 0 is invertible and ρ 1 ( X , · ) is monotonic, outside a small-dimensional set (wlog, an A -cell, by induction on the dimension). Hence, it is enough to prove: A ⊆ R m + 1 A -cell and ρ ↾ A as above ⇒ ρ ( A ) is a fin. disj. union of A -cells. Wlog, A = { ( X , Y ) : X ∈ C , Y ∗ t ( X ) } , with C ⊆ R m A -cell, ∗ ∈ { = , < } and t : C → R A -term. ( x , y ) : x ∈ ρ 0 ( C ) , y ∗ ′ ρ 1 ρ − 1 ρ − 1 � � � ��� Then, ρ ( A ) = ( x ) , t ( x ) . 0 0

  39. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q . Then so does f on ρ ( Q ) . So, it is enough to show that ρ ( Q ) is a finite disjoint union of A -cells. By verticality, ρ 0 is invertible and ρ 1 ( X , · ) is monotonic, outside a small-dimensional set (wlog, an A -cell, by induction on the dimension). Hence, it is enough to prove: A ⊆ R m + 1 A -cell and ρ ↾ A as above ⇒ ρ ( A ) is a fin. disj. union of A -cells. Wlog, A = { ( X , Y ) : X ∈ C , Y ∗ t ( X ) } , with C ⊆ R m A -cell, ∗ ∈ { = , < } and t : C → R A -term. ( x , y ) : x ∈ ρ 0 ( C ) , y ∗ ′ ρ 1 ρ − 1 ρ − 1 � � � ��� Then, ρ ( A ) = ( x ) , t ( x ) . 0 0 By induction on the dimension, ρ 0 ( C ) is a fin. disj. union of A -cells.

  40. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q . Then so does f on ρ ( Q ) . So, it is enough to show that ρ ( Q ) is a finite disjoint union of A -cells. By verticality, ρ 0 is invertible and ρ 1 ( X , · ) is monotonic, outside a small-dimensional set (wlog, an A -cell, by induction on the dimension). Hence, it is enough to prove: A ⊆ R m + 1 A -cell and ρ ↾ A as above ⇒ ρ ( A ) is a fin. disj. union of A -cells. Wlog, A = { ( X , Y ) : X ∈ C , Y ∗ t ( X ) } , with C ⊆ R m A -cell, ∗ ∈ { = , < } and t : C → R A -term. ( x , y ) : x ∈ ρ 0 ( C ) , y ∗ ′ ρ 1 ρ − 1 ρ − 1 � � � ��� Then, ρ ( A ) = ( x ) , t ( x ) . 0 0 By induction on the dimension, ρ 0 ( C ) is a fin. disj. union of A -cells. ρ − 1 ρ − 1 � � �� By verticality, ρ 1 ( x ) , t ( x ) is an A -term. 0 0

  41. Why is this enough? Recall: W ∩ [ 0 , r ) m + 1 = � � [ 0 , ε ) m + 1 � and f ◦ ρ = X α Y β U ( X , Y ) ; ρ ∈F ρ x = ρ 0 ( X ) ; y = ρ 1 ( X , Y ) . Partition [ 0 , ε ) m + 1 into finitely many subquadrants Q of dim ≤ m + 1 s.t. f ◦ ρ has constant sign on Q . Then so does f on ρ ( Q ) . So, it is enough to show that ρ ( Q ) is a finite disjoint union of A -cells. By verticality, ρ 0 is invertible and ρ 1 ( X , · ) is monotonic, outside a small-dimensional set (wlog, an A -cell, by induction on the dimension). Hence, it is enough to prove: A ⊆ R m + 1 A -cell and ρ ↾ A as above ⇒ ρ ( A ) is a fin. disj. union of A -cells. Wlog, A = { ( X , Y ) : X ∈ C , Y ∗ t ( X ) } , with C ⊆ R m A -cell, ∗ ∈ { = , < } and t : C → R A -term. ( x , y ) : x ∈ ρ 0 ( C ) , y ∗ ′ ρ 1 ρ − 1 ρ − 1 � � � ��� Then, ρ ( A ) = ( x ) , t ( x ) . 0 0 By induction on the dimension, ρ 0 ( C ) is a fin. disj. union of A -cells. ρ − 1 ρ − 1 � � �� By verticality, ρ 1 ( x ) , t ( x ) is an A -term. 0 0

  42. Examples of vertical blow-ups (m=2)

  43. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2

  44. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2 2 y γ and λ ∈ R ∪ {∞} , then f ◦ π λ ∈ R { x ∗ � 1 x β c αβγ x α 1 , x ∗ 2 , y ∗ } : • If f = α,β,γ

  45. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2 2 y γ and λ ∈ R ∪ {∞} , then f ◦ π λ ∈ R { x ∗ � 1 x β c αβγ x α 1 , x ∗ 2 , y ∗ } : • If f = α,β,γ ( λ + x 2 ) β y γ x 1 , x δ α,β,γ c αβγ x α + δβ � � = � f 1 ( λ + x 2 ) , y 1

  46. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2 2 y γ and λ ∈ R ∪ {∞} , then f ◦ π λ ∈ R { x ∗ � 1 x β c αβγ x α 1 , x ∗ 2 , y ∗ } : • If f = α,β,γ ( λ + x 2 ) β y γ x 1 , x δ α,β,γ c αβγ x α + δβ � � = � f 1 ( λ + x 2 ) , y 1 ( λ + x 2 ) β = � � β λ β − n x n � 2 n ∈ N n

  47. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2 2 y γ and λ ∈ R ∪ {∞} , then f ◦ π λ ∈ R { x ∗ � 1 x β c αβγ x α 1 , x ∗ 2 , y ∗ } : • If f = α,β,γ ( λ + x 2 ) β y γ x 1 , x δ α,β,γ c αβγ x α + δβ � � = � f 1 ( λ + x 2 ) , y 1 ( λ + x 2 ) β = � � β λ β − n x n � ( x 2 becomes an analytic variable) 2 n ∈ N n

  48. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2 2 y γ and λ ∈ R ∪ {∞} , then f ◦ π λ ∈ R { x ∗ � 1 x β c αβγ x α 1 , x ∗ 2 , y ∗ } : • If f = α,β,γ ( λ + x 2 ) β y γ x 1 , x δ α,β,γ c αβγ x α + δβ � � = � f 1 ( λ + x 2 ) , y 1 ( λ + x 2 ) β = � � β λ β − n x n � ( x 2 becomes an analytic variable) 2 n ∈ N n  π 0 � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, 0 ≤ x 2 < ε x δ � � = 1    π λ � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, λ x δ 1 ≤ x 2 < ( λ + ε ) x δ � � = • 1 � � π ∞ � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε x 1 /δ  [ 0 , ε ) 3 � = , 0 ≤ x 2 < ε   2

  49. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2 2 y γ and λ ∈ R ∪ {∞} , then f ◦ π λ ∈ R { x ∗ � 1 x β c αβγ x α 1 , x ∗ 2 , y ∗ } : • If f = α,β,γ ( λ + x 2 ) β y γ x 1 , x δ α,β,γ c αβγ x α + δβ � � = � f 1 ( λ + x 2 ) , y 1 ( λ + x 2 ) β = � � β λ β − n x n � ( x 2 becomes an analytic variable) 2 n ∈ N n  π 0 � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, 0 ≤ x 2 < ε x δ � � = 1    π λ � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, λ x δ 1 ≤ x 2 < ( λ + ε ) x δ � � = • , so 1 � � π ∞ � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε x 1 /δ  [ 0 , ε ) 3 � = , 0 ≤ x 2 < ε   2 [ 0 , r ) 3 ∩ W = � π λ � [ 0 , ε ) 3 � λ ∈ R ∪{∞}

  50. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2 2 y γ and λ ∈ R ∪ {∞} , then f ◦ π λ ∈ R { x ∗ � 1 x β c αβγ x α 1 , x ∗ 2 , y ∗ } : • If f = α,β,γ ( λ + x 2 ) β y γ x 1 , x δ α,β,γ c αβγ x α + δβ � � = � f 1 ( λ + x 2 ) , y 1 ( λ + x 2 ) β = � � β λ β − n x n � ( x 2 becomes an analytic variable) 2 n ∈ N n  π 0 � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, 0 ≤ x 2 < ε x δ � � = 1    π λ � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, λ x δ 1 ≤ x 2 < ( λ + ε ) x δ � � = • , so 1 � � π ∞ � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε x 1 /δ  [ 0 , ε ) 3 � = , 0 ≤ x 2 < ε   2 [ 0 , r ) 3 ∩ W = � π λ � [ 0 , ε ) 3 � (need only finitely many λ , by compactness) λ ∈ R ∪{∞}

  51. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2 2 y γ and λ ∈ R ∪ {∞} , then f ◦ π λ ∈ R { x ∗ � 1 x β c αβγ x α 1 , x ∗ 2 , y ∗ } : • If f = α,β,γ ( λ + x 2 ) β y γ x 1 , x δ α,β,γ c αβγ x α + δβ � � = � f 1 ( λ + x 2 ) , y 1 ( λ + x 2 ) β = � � β λ β − n x n � ( x 2 becomes an analytic variable) 2 n ∈ N n  π 0 � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, 0 ≤ x 2 < ε x δ � � = 1    π λ � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, λ x δ 1 ≤ x 2 < ( λ + ε ) x δ � � = • , so 1 � � π ∞ � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε x 1 /δ  [ 0 , ε ) 3 � = , 0 ≤ x 2 < ε   2 [ 0 , r ) 3 ∩ W = � π λ � [ 0 , ε ) 3 � (need only finitely many λ , by compactness) λ ∈ R ∪{∞} • π λ = π λ 0 , π λ π λ � � respects y , for λ ∈ R ∪ {∞} : 1 = id (so, monotonic), 1

  52. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2 2 y γ and λ ∈ R ∪ {∞} , then f ◦ π λ ∈ R { x ∗ � 1 x β c αβγ x α 1 , x ∗ 2 , y ∗ } : • If f = α,β,γ ( λ + x 2 ) β y γ x 1 , x δ α,β,γ c αβγ x α + δβ � � = � f 1 ( λ + x 2 ) , y 1 ( λ + x 2 ) β = � � β λ β − n x n � ( x 2 becomes an analytic variable) 2 n ∈ N n  π 0 � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, 0 ≤ x 2 < ε x δ � � = 1    π λ � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, λ x δ 1 ≤ x 2 < ( λ + ε ) x δ � � = • , so 1 � � π ∞ � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε x 1 /δ  [ 0 , ε ) 3 � = , 0 ≤ x 2 < ε   2 [ 0 , r ) 3 ∩ W = � π λ � [ 0 , ε ) 3 � (need only finitely many λ , by compactness) λ ∈ R ∪{∞} • π λ = π λ 0 , π λ π λ � � respects y , for λ ∈ R ∪ {∞} : 1 = id (so, monotonic), 1 π λ 0 does not depend on y and is bijective outside { x 1 = 0 } , { x 2 = 0 }

  53. Examples of vertical blow-ups (m=2) Fix δ ∈ ( 0 , ∞ ) .  π 0 : ( x 1 , x 2 , y ) �→ x 1 , x δ � � 1 x 2 , y ( chart at 0 )   π λ : ( x 1 , x 2 , y ) �→  x 1 , x δ � � 1 ( λ + x 2 ) , y ( λ ∈ R \ { 0 } ) ( regular charts) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 x 1 /δ  , x 2 , y ( chart at ∞ )   2 2 y γ and λ ∈ R ∪ {∞} , then f ◦ π λ ∈ R { x ∗ � 1 x β c αβγ x α 1 , x ∗ 2 , y ∗ } : • If f = α,β,γ ( λ + x 2 ) β y γ x 1 , x δ α,β,γ c αβγ x α + δβ � � = � f 1 ( λ + x 2 ) , y 1 ( λ + x 2 ) β = � � β λ β − n x n � ( x 2 becomes an analytic variable) 2 n ∈ N n  π 0 � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, 0 ≤ x 2 < ε x δ � � = 1    π λ � [ 0 , ε ) 3 � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε, λ x δ 1 ≤ x 2 < ( λ + ε ) x δ � � = • , so 1 � � π ∞ � ( x 1 , x 2 , y ) : 0 ≤ x 1 < ε x 1 /δ  [ 0 , ε ) 3 � = , 0 ≤ x 2 < ε   2 [ 0 , r ) 3 ∩ W = � π λ � [ 0 , ε ) 3 � (need only finitely many λ , by compactness) λ ∈ R ∪{∞} • π λ = π λ 0 , π λ π λ � � respects y , for λ ∈ R ∪ {∞} : 1 = id (so, monotonic), 1 π λ 0 does not depend on y and is bijective outside { x 1 = 0 } , { x 2 = 0 } � − 1 : ( x 1 , x 2 ) �→ � � x 1 x − 1 /δ π λ x 1 , x 2 x − δ x 1 , x 2 x − δ � � � � � ; − λ ; , x 2 A -terms 0 1 1 2

  54. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β

  55. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β

  56. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � x 1 , x α/β x 2 , y  1    f ◦ π λ = f � � x 1 , x α/β ( λ + x 2 ) , y 1  f ◦ π ∞ = f � � x 1 x 1 /δ  , x 2 , y   2

  57. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β x 2 , y  1 1    f ◦ π λ = f � � x 1 , x α/β ( λ + x 2 ) , y 1  f ◦ π ∞ = f � � x 1 x 1 /δ  , x 2 , y   2

  58. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � x 1 , x α/β ( λ + x 2 ) , y 1  f ◦ π ∞ = f � � x 1 x 1 /δ  , x 2 , y   2

  59. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α ( λ + x 2 ) , y 1 1  f ◦ π ∞ = f � � x 1 x 1 /δ  , x 2 , y   2

  60. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � x 1 x 1 /δ  , x 2 , y   2

  61. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2

  62. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2

  63. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ

  64. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1

  65. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1 π 0 = x α 1 ( 1 − y γ ( 1 + η 0 ( x 1 , x 2 , y ))) , with η 0 ( 0 , 0 , 0 ) = 0. g ◦ ˜

  66. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1 π 0 = x α 1 ( 1 − y γ ( 1 + η 0 ( x 1 , x 2 , y ))) , with η 0 ( 0 , 0 , 0 ) = 0. (trivial solution) g ◦ ˜

  67. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1 π 0 = x α 1 ( 1 − y γ ( 1 + η 0 ( x 1 , x 2 , y ))) , with η 0 ( 0 , 0 , 0 ) = 0. (trivial solution) g ◦ ˜ π λ : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ b) regular charts for λ ∈ R \ { 0 } ˜ ( λ + y ) 1

  68. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1 π 0 = x α 1 ( 1 − y γ ( 1 + η 0 ( x 1 , x 2 , y ))) , with η 0 ( 0 , 0 , 0 ) = 0. (trivial solution) g ◦ ˜ π λ : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ b) regular charts for λ ∈ R \ { 0 } ˜ ( λ + y ) 1 π λ = x α 1 ( 1 − ( λ + y ) γ ( 1 + η 0 ( x 1 , x 2 , y ))) g ◦ ˜

  69. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1 π 0 = x α 1 ( 1 − y γ ( 1 + η 0 ( x 1 , x 2 , y ))) , with η 0 ( 0 , 0 , 0 ) = 0. (trivial solution) g ◦ ˜ π λ : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ b) regular charts for λ ∈ R \ { 0 } ˜ ( λ + y ) 1 π λ = x α 1 ( 1 − ( λ + y ) γ ( 1 + η 0 ( x 1 , x 2 , y ))) g ◦ ˜ 1 ( 1 − λ γ + η ( x 1 , x 2 , y )) , with η ( 0 , 0 , 0 ) = 0 = x α

  70. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1 π 0 = x α 1 ( 1 − y γ ( 1 + η 0 ( x 1 , x 2 , y ))) , with η 0 ( 0 , 0 , 0 ) = 0. (trivial solution) g ◦ ˜ π λ : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ b) regular charts for λ ∈ R \ { 0 } ˜ ( λ + y ) 1 π λ = x α 1 ( 1 − ( λ + y ) γ ( 1 + η 0 ( x 1 , x 2 , y ))) g ◦ ˜ 1 ( 1 − λ γ + η ( x 1 , x 2 , y )) , with η ( 0 , 0 , 0 ) = 0 = x α (y analytic)

  71. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1 π 0 = x α 1 ( 1 − y γ ( 1 + η 0 ( x 1 , x 2 , y ))) , with η 0 ( 0 , 0 , 0 ) = 0. (trivial solution) g ◦ ˜ π λ : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ b) regular charts for λ ∈ R \ { 0 } ˜ ( λ + y ) 1 π λ = x α 1 ( 1 − ( λ + y ) γ ( 1 + η 0 ( x 1 , x 2 , y ))) g ◦ ˜ 1 ( 1 − λ γ + η ( x 1 , x 2 , y )) , with η ( 0 , 0 , 0 ) = 0 = x α (y analytic) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 y γ/α , x 2 , y c) chart at ∞ ˜

  72. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1 π 0 = x α 1 ( 1 − y γ ( 1 + η 0 ( x 1 , x 2 , y ))) , with η 0 ( 0 , 0 , 0 ) = 0. (trivial solution) g ◦ ˜ π λ : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ b) regular charts for λ ∈ R \ { 0 } ˜ ( λ + y ) 1 π λ = x α 1 ( 1 − ( λ + y ) γ ( 1 + η 0 ( x 1 , x 2 , y ))) g ◦ ˜ 1 ( 1 − λ γ + η ( x 1 , x 2 , y )) , with η ( 0 , 0 , 0 ) = 0 = x α (y analytic) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 y γ/α , x 2 , y c) chart at ∞ ˜ ! NOT VERTICAL !

  73. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1 π 0 = x α 1 ( 1 − y γ ( 1 + η 0 ( x 1 , x 2 , y ))) , with η 0 ( 0 , 0 , 0 ) = 0. (trivial solution) g ◦ ˜ π λ : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ b) regular charts for λ ∈ R \ { 0 } ˜ ( λ + y ) 1 π λ = x α 1 ( 1 − ( λ + y ) γ ( 1 + η 0 ( x 1 , x 2 , y ))) g ◦ ˜ 1 ( 1 − λ γ + η ( x 1 , x 2 , y )) , with η ( 0 , 0 , 0 ) = 0 = x α (y analytic) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 y γ/α , x 2 , y c) chart at ∞ ˜ ! NOT VERTICAL ! However, y γ > > x α π ∞ � [ 0 , ε ) 3 � 1 on ˜ , so g cannot vanish there.

  74. Blow-ups in action 2 y γ ( 1 + x 1 y ) Example. f ( x 1 , x 2 , y ) = x α 1 − x β • π blow-up of ( x 1 , x 2 ) with exponent δ = α β  f ◦ π 0 = f � � � 2 y γ ( 1 + x 1 y ) � x 1 , x α/β = x α 1 − x β = x α x 2 , y 1 · unit  1 1    f ◦ π λ = f � � � 1 − y γ ( 1 + x 1 y ) ( λ + x 2 ) β � x 1 , x α/β = x α = x α ( λ + x 2 ) , y 1 · unit 1 1  f ◦ π ∞ = f � � � 1 − y γ � �� x 1 x 1 /δ = x β 1 + x 1 x β/α  x α , x 2 , y y   2 2 2 1 − y γ � � 1 + x 1 x β/α Now we look at g ( x 1 , x 2 , y ) = x α y 2 π = blow-up of ( x 1 , y ) with exponent α • ˜ γ π 0 : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ a) chart at 0 ˜ y 1 π 0 = x α 1 ( 1 − y γ ( 1 + η 0 ( x 1 , x 2 , y ))) , with η 0 ( 0 , 0 , 0 ) = 0. (trivial solution) g ◦ ˜ π λ : ( x 1 , x 2 , y ) �→ � � x 1 , x 2 , x α/γ b) regular charts for λ ∈ R \ { 0 } ˜ ( λ + y ) 1 π λ = x α 1 ( 1 − ( λ + y ) γ ( 1 + η 0 ( x 1 , x 2 , y ))) g ◦ ˜ 1 ( 1 − λ γ + η ( x 1 , x 2 , y )) , with η ( 0 , 0 , 0 ) = 0 = x α (y analytic) π ∞ : ( x 1 , x 2 , y ) �→ � � x 1 y γ/α , x 2 , y c) chart at ∞ ˜ ! NOT VERTICAL ! However, y γ > > x α π ∞ � [ 0 , ε ) 3 � 1 on ˜ , so g cannot vanish there. (trivial solution)

  75. i = 1 x α i 1 x β i General strategy. f ( x 1 , x 2 , y ) = � d 2 y γ i U i ( x 1 , x 2 , y ) U i units.

  76. i = 1 x α i 1 x β i General strategy. f ( x 1 , x 2 , y ) = � d 2 y γ i U i ( x 1 , x 2 , y ) U i units. � d � x α i 1 x β i 2 y γ i Monomialisation algorithm : the set of minimal monomials i = 1 determines the choice of pairs of variables and exponents in the blow-ups.

  77. i = 1 x α i 1 x β i General strategy. f ( x 1 , x 2 , y ) = � d 2 y γ i U i ( x 1 , x 2 , y ) U i units. � d � x α i 1 x β i 2 y γ i Monomialisation algorithm : the set of minimal monomials i = 1 determines the choice of pairs of variables and exponents in the blow-ups. ———

  78. i = 1 x α i 1 x β i General strategy. f ( x 1 , x 2 , y ) = � d 2 y γ i U i ( x 1 , x 2 , y ) U i units. � d � x α i 1 x β i 2 y γ i Monomialisation algorithm : the set of minimal monomials i = 1 determines the choice of pairs of variables and exponents in the blow-ups. ——— Problem: solving systems of equations (joint work with J.-P. Rolin). � f ( x 1 , x 2 , y 1 , y 2 ) = 0 Given f , g ∈ R { x ∗ 1 , x ∗ 2 , y ∗ 1 , y ∗ 2 } , find the solutions of g ( x 1 , x 2 , y 1 , y 2 ) = 0.

  79. i = 1 x α i 1 x β i General strategy. f ( x 1 , x 2 , y ) = � d 2 y γ i U i ( x 1 , x 2 , y ) U i units. � d � x α i 1 x β i 2 y γ i Monomialisation algorithm : the set of minimal monomials i = 1 determines the choice of pairs of variables and exponents in the blow-ups. ——— Problem: solving systems of equations (joint work with J.-P. Rolin). � f ( x 1 , x 2 , y 1 , y 2 ) = 0 Given f , g ∈ R { x ∗ 1 , x ∗ 2 , y ∗ 1 , y ∗ 2 } , find the solutions of g ( x 1 , x 2 , y 1 , y 2 ) = 0. Possible strategy. Find a solution y 2 = t ( x 1 , x 2 , y 1 ) ( t A -term) of f = 0 and replace in g .

Recommend


More recommend