pumping and population inversion laser amplification
play

Pumping and population inversion - Laser amplification Gustav - PowerPoint PPT Presentation

Pumping and population inversion - Laser amplification Gustav Lindgren 2015-02-12 Contents Part I: Laser pumping and population inversion Steady state laser pumping and population inversion 4-level laser Solve rate-equations in steady-state


  1. Pumping and population inversion - Laser amplification Gustav Lindgren 2015-02-12

  2. Contents Part I: Laser pumping and population inversion Steady state laser pumping and population inversion 4-level laser Solve rate-equations in steady-state 3-level laser Laser gain saturation Introduce the upper-level model Upper-level laser Transient rate equations Solve rate-equations under Upper-level laser transients Three-level laser

  3. Atomic transitions Energy-level diagram of Nd:YAG Simplify into ->

  4. 4-level laser Rate equations: Pumping - Decay 𝑒𝑂 4 𝑒𝑒 = 𝑋 π‘ž 𝑂 1 βˆ’ 𝑂 4 βˆ’ 𝑂 4 /𝜐 41 𝑒𝑂 3 𝑒𝑒 = 𝑂 4 βˆ’ 𝑂 3 Decay In/Out 𝜐 43 𝜐 3 𝑒𝑂 2 𝑒𝑒 = 𝑂 4 + 𝑂 3 βˆ’ 𝑂 2 Same 𝜐 42 𝜐 32 𝜐 21 Atom conservation: 𝑂 1 + 𝑂 2 + 𝑂 3 + 𝑂 4 = 𝑂 β€œOptical approximation”, β„πœ•/𝑙 𝐢 π‘ˆ β‰ͺ 1 No thermal occupancy

  5. 4-level laser At steady state: 𝑂 3 = 𝜐 3 𝑂 4 𝜐 43 Define beta 𝜐 21 + 𝜐 43 𝜐 21 𝑂 2 = 𝑂 3 ≑ 𝛾𝑂 3 𝜐 32 𝜐 42 𝜐 3 For a good laser: No direct decay into lev2 𝛿 42 β‰ˆ 0 (𝑗. 𝑓. 𝜐 42 β†’ ∞) , β†’ 𝛾 β‰ˆ 𝜐 21 β†’ 𝜐 32 Fluorescent quantum efficiency, πœƒ ≑ 𝜐 4 β‹… 𝜐 3 𝜐 43 𝜐 𝑠𝑏𝑒 Useful photons: from 4 -> upper laser * From upper laser that lase

  6. 4-level laser Calculate the pop. Inv. Population inversion, 𝑂 3 βˆ’ 𝑂 2 1 βˆ’ 𝛾 πœƒπ‘‹ π‘ž 𝜐 𝑠𝑏𝑒 = 1 + 1 + 𝛾 + 2𝜐 43 𝑂 𝜐 𝑠𝑏𝑒 πœƒπ‘‹ π‘ž 𝜐 𝑠𝑏𝑒 For a good laser: 𝜐 43 β‰ͺ 𝜐 𝑠𝑏𝑒 - Short lev 4 lifetime 𝛾 β‰ˆ 𝜐 21 /𝜐 32 β†’ 0 - Short lower lev lifetime πœƒ β†’ 1 - High fluorescent quantum efficiency 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 β‡’ 𝑂 3 βˆ’ 𝑂 2 β‰ˆ 𝑂 1 + 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 - Red curves

  7. 3-level laser As before, for 3-level Rate equations: Pumping – decay BUT lower level is GROUND level 𝑒𝑂 3 π‘ž 𝑂 1 βˆ’ 𝑂 3 βˆ’ 𝑂 3 𝑒𝑒 = 𝑋 𝜐 3 𝑒𝑂 2 𝑒𝑒 = 𝑂 3 βˆ’ 𝑂 2 decays 𝜐 32 𝜐 21 Atom conservation: 𝑂 1 + 𝑂 2 + 𝑂 3 = 𝑂 as before πœƒ = 𝜐 3 𝜐 21 As before 𝜐 32 𝜐 𝑠𝑏𝑒 𝛾 = 𝑂 3 = 𝜐 32 Different! 𝑂 2 𝜐 21

  8. 3-level laser No pumping NEGATIVE pop. Inv. At steady state, -> 1 βˆ’ 𝛾 πœƒπ‘‹ π‘ž 𝜐 𝑠𝑏𝑒 βˆ’ 1 𝑂 2 βˆ’ 𝑂 1 = π‘ž 𝜐 𝑠𝑏𝑒 + 1 𝑂 1 + 2𝛾 πœƒπ‘‹ Requirements for pop. inversion: 𝛾 < 1 As before 1 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 β‰₯ πœƒ 1βˆ’π›Ύ New For a good laser, 𝛾 β†’ 0 πœƒ β†’ 1 β‰ˆ 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 βˆ’ 1 𝑂 2 βˆ’ 𝑂 1 π‘ž 𝜐 𝑠𝑏𝑒 + 1 𝑂 𝑋 Red curves

  9. Population inversion All else equal: 3-level requires more pumping

  10. Upper-level laser Lasing between two levels high above ground-level 𝑒𝑂 3 Pump into upper lev. = 𝑋 π‘ž 𝑂 0 βˆ’ 𝑂 3 𝑒𝑒 π‘žπ‘£π‘›π‘ž Assuming, 𝑂 0 β‰ˆ 𝑂 ≫ 𝑂 3 and pump efficiency, πœƒ π‘ž , 𝑒𝑂 3 most atoms in ground- β‰ˆ πœƒ π‘ž 𝑋 π‘ž 𝑂 ≑ 𝑆 π‘ž state 𝑒𝑒 π‘žπ‘£π‘›π‘ž Rate equations: Signal included 𝑒𝑂 2 𝑒𝑒 = 𝑆 π‘ž βˆ’ 𝑋 𝑑𝑗𝑕 𝑂 2 βˆ’ 𝑂 1 βˆ’ 𝛿 2 𝑂 2 𝑒𝑂 1 𝑒𝑒 = 𝑋 𝑑𝑗𝑕 𝑂 2 βˆ’ 𝑂 1 + 𝛿 21 𝑂 2 βˆ’ 𝛿 1 𝑂 1

  11. Upper-level laser At steady state: 𝑋 𝑑𝑗𝑕 + 𝛿 21 𝑂 1 = 𝑆 π‘ž 𝑋 𝑑𝑗𝑕 𝛿 1 + 𝛿 20 + 𝛿 1 𝛿 2 𝑋 𝑑𝑗𝑕 + 𝛿 1 𝑂 2 = 𝑆 π‘ž 𝑋 𝑑𝑗𝑕 𝛿 1 + 𝛿 20 + 𝛿 1 𝛿 2 No atom conservation! For example, changing pump changes N

  12. Upper-level laser The pop. Inv. Saturates as the signal increases Population inversion: 𝑆 π‘ž 𝛿 1 βˆ’ 𝛿 21 Δ𝑂 21 = 𝑂 2 βˆ’ 𝑂 1 = β‹… 1 + 𝛿 1 + 𝛿 20 𝛿 1 𝛿 2 𝑋 𝑑𝑗𝑕 𝛿 1 𝛿 2 𝛿 1 βˆ’π›Ώ 21 Define the small-signal population inversion, Δ𝑂 0 = 𝛿 1 𝛿 2 𝑆 π‘ž and the effective recovery time, 𝜐 𝑓𝑔𝑔 = 𝜐 2 1 + 𝜐 1 𝜐 20 the expression becomes: 1 Ξ”N 21 = Δ𝑂 0 1 + 𝑋 𝑑𝑗𝑕 𝜐 𝑓𝑔𝑔 For a good laser: 𝛿 2 β‰ˆ 𝛿 21 𝛿 20 β‰ˆ 0 1 β†’ Ξ”N 21 β‰ˆ 𝑆 π‘ž 𝜐 2 βˆ’ 𝜐 1 β‹… 1 + 𝑋 𝑑𝑗𝑕 𝜐 2 Prop. To pump-rate and lifetimes, saturation behavior

  13. Upper-level laser β€’ Condition for obtaining inversion, 𝜐 1 /𝜐 21 < 1 i.e. fast relaxation from lower level and slow relaxation from upper level β€’ Small-signal gain, 𝜐 2 Δ𝑂 0 ∼ 𝑆 π‘ž β‹… 1 βˆ’ 𝜐 1 /𝜐 21 i.e. small-signal gain is proportional to the pump-rate times a reduced upper-level lifetime β€’ Saturation behavior, 1 Δ𝑂 21 = Δ𝑂 0 β‹… 1 + 𝑋 𝑑𝑗𝑕 𝜐 𝑓𝑔𝑔 i.e. the saturation intensity depends only on the signal intensity and the effective lifetime , not on the pumping rate.

  14. Upper-level laser: Transient rate equation As for instance before a Q-switched pulse Assume: No signal ( 𝑋 𝑑𝑗𝑕 = 0 ), fast lower-level relaxation ( 𝑂 1 β‰ˆ 0 ), 𝑒𝑂 2 𝑒 = 𝑆 π‘ž 𝑒 βˆ’ 𝛿 2 𝑂 2 𝑒 𝑒𝑒 The upper level population becomes, 𝑒 𝑆 π‘ž 𝑒 β€² 𝑓 βˆ’π›Ώ 2 (π‘’βˆ’π‘’ β€² ) 𝑒𝑒′ 𝑂 2 𝑒 = βˆ’βˆž Applying a square pulse, π‘ž = 𝑆 π‘ž0 𝜐 2 (1 βˆ’ 𝑓 βˆ’π‘ˆ π‘ž /𝜐 2 ) 𝑂 2 π‘ˆ Define the pump efficiency, = 1 βˆ’ 𝑓 βˆ’π‘ˆ π‘ž /𝜐 2 πœƒ π‘ž = 𝑂 2 𝑒 = π‘ˆ π‘ž 𝑆 π‘ž0 π‘ˆ π‘ˆ π‘ž /𝜐 2 π‘ž ^Pop. In upper lev per pump-photon

  15. 3-level laser: pulses 3-level laser from prev, no signal Assume: No signal ( 𝑋 𝑑𝑗𝑕 = 0 ), Fast upper-level relaxation ( 𝜐 3 β‰ˆ 0 ), 𝑒𝑂 1 𝑒𝑒 = βˆ’ 𝑒𝑂 2 π‘ž 𝑒 𝑂 1 𝑒 + 𝑂 2 𝑒 𝑒𝑒 β‰ˆ βˆ’π‘‹ 𝜐 𝑒 π‘ž 𝑒 + 1 π‘ž 𝑒 βˆ’ 1 𝑒𝑒 Δ𝑂 𝑒 = βˆ’ 𝑋 𝜐 Δ𝑂 𝑒 + 𝑋 𝜐 𝑂 Integrate to get pop. Inv: Square pulse: = (𝑋 π‘ž 𝜐 βˆ’ 1) βˆ’ 2𝑋 π‘ž 𝜐 β‹… exp [βˆ’ 𝑋 π‘ž 𝜐 + 1 𝑒/𝜐] Δ𝑂 𝑒 𝑂 𝑋 π‘ž 𝜐 + 1 If pump pulse duration is short ( π‘ˆ π‘ž β‰ͺ 𝜐 ), and the pumping rate is high ( 𝑋 π‘ž 𝜐 ≫ 1 Simple model-agrees with experiment! Δ𝑂 π‘ˆ π‘ž β‰ˆ 1 βˆ’ 2𝑓 βˆ’π‘‹ π‘ž π‘ˆ π‘ž 𝑂

  16. Summary Steady state laser pumping and population inversion 4-level laser 𝑂 3 βˆ’ 𝑂 2 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 Difference between three β‰ˆ 𝑂 1 + 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 and four-level systems, and 3-level laser why four-level systems are 𝑋 π‘ž 𝜐 𝑠𝑏𝑒 βˆ’ 1 𝑂 2 βˆ’π‘‚ 1 superior β‰ˆ π‘ž 𝜐 𝑠𝑏𝑒 𝑂 1 + 𝑋 Saturation intensity is Laser gain saturation independent of the Upper-level laser, saturation behavior 1 pumping-rate ”i.e. The signal intensity Δ𝑂 21 = Δ𝑂 0 β‹… 1+𝑋 𝑑𝑗𝑕 𝜐 𝑓𝑔𝑔 needed to reduce the pop. Inv. To half its initial value doesn’t depend on the pumping rate” Short pulses are needed to Transient rate equations obtain high pumping Upper-level laser = 1 βˆ’ 𝑓 βˆ’π‘ˆ π‘ž /𝜐 2 πœƒ π‘ž = 𝑂 2 𝑒 = π‘ˆ efficiency π‘ž 𝑆 π‘ž0 π‘ˆ π‘ˆ π‘ž /𝜐 2 π‘ž Three-level laser These simple models give good agreement with Δ𝑂 π‘ˆ π‘ž β‰ˆ 1 βˆ’ 2𝑓 βˆ’π‘‹ π‘ž π‘ˆ π‘ž reality 𝑂

  17. Contents Part II: Laser amplification Wave propagation in atomic media Solve wave-eqs Plane-wave approximation The paraxial wave equation Single-pass laser amplification Gain narrowing Transition cross-sections See effects on the gain Gain saturation Power extraction

  18. Wave propagation in an atomic medium Maxwell’s equations: 𝛼𝑦𝑭 = βˆ’π‘˜πœ•π‘ͺ 𝛼𝑦𝑰 = 𝑲 + π‘˜πœ•π‘¬ Material parameters: Constitutive relations: 𝜈 – magnetic permeability π‘ͺ = πœˆπ‘° 𝜏 – ohmic losses 𝑲 = πœπ‘­ πœ— – dielectric permittivity (not counting 𝑬 = πœ—π‘­ + 𝑸 𝑏𝑒 = πœ— 1 + 𝝍 𝑏𝑒 𝑭 atomic transitions) πœ“ 𝑏𝑒 (πœ•) – resonant susceptibility due Vector field of the form: to laser transitions 𝝑 𝒔, 𝑒 = 1 2 𝑭 𝒔 𝑓 π‘˜πœ•π‘’ + 𝑑. 𝑑 Assume a spatially uniform material ( 𝛼 β‹… 𝐹 = 0 ), and apply 𝛼 Γ— to get the wave equation: 𝑏𝑒 βˆ’ π‘˜πœ 𝛼 2 + πœ• 2 πœˆπœ— 1 + πœ“ 𝑦, 𝑧, 𝑨 = 0 𝐹 πœ•πœ—

  19. Plane-wave approximation <- Ok approx. If Consider a plane wave, wavefront is flat πœ– 2 𝐹 πœ–π‘¦ 2 , πœ– 2 𝐹 πœ–π‘§ 2 β‰ͺ πœ– 2 𝐹 πœ–π‘¨ 2 i.e. 𝛼 2 β†’ 𝑒 2 𝑒𝑨 2 The equation reduces to: 𝑏𝑒 βˆ’ π‘˜πœ 2 + πœ• 2 πœˆπœ— 1 + πœ“ 𝑨 = 0 𝑒 𝑨 𝐹 πœ•πœ—

  20. Plane-wave approximation Without losses: First, no losses 2 + πœ• 2 πœˆπœ— 𝐹 𝑨 = 0, 𝑒 𝑨 Assume solutions on the form: 𝑨 = π‘‘π‘π‘œπ‘‘π‘’ β‹… 𝑓 βˆ’Ξ“π‘¨ 𝐹 β‡’ Ξ“ 2 + πœ• 2 πœˆπœ— 𝐹 = 0 The allowed values for Ξ“ are, Ξ“ = Β±π‘˜πœ• πœˆπœ— ≑ Β±π‘˜π›Ύ With the solution, 𝝑 𝑨, 𝑒 = 1 + 1 2 𝐹 + 𝑓 π‘˜ πœ•π‘’βˆ’π›Ύπ‘¨ + 𝐹 + 2 𝐹 βˆ’ 𝑓 π‘˜ πœ•π‘’+𝛾𝑨 + 𝐹 βˆ’ βˆ— 𝑓 βˆ’π‘˜ πœ•π‘’+𝛾𝑨 βˆ— 𝑓 βˆ’π‘˜ πœ•π‘’βˆ’π›Ύπ‘¨ The free space propagation constant, 𝛾, may be written: 𝛾 = πœ• πœˆπœ— = πœ• 𝑑 = 2𝜌 Different beta πœ‡ from last chapter

Recommend


More recommend