an introduction to particle rare event simulation p del
play

An introduction to particle rare event simulation P. Del Moral - PowerPoint PPT Presentation

An introduction to particle rare event simulation P. Del Moral INRIA Bordeaux- Sud Ouest & IMB & CMAP Computation of transition trajectories and rare events in non equilibrium systems , ENS Lyon, June 2012 Some hyper-refs


  1. An introduction to particle rare event simulation P. Del Moral INRIA Bordeaux- Sud Ouest & IMB & CMAP Computation of transition trajectories and rare events in non equilibrium systems , ENS Lyon, June 2012 Some hyper-refs ◮ Feynman-Kac formulae, Genealogical & Interacting Particle Systems with appl., Springer (2004) ◮ Sequential Monte Carlo Samplers JRSS B. (2006). (joint work with A. Doucet & A. Jasra) ◮ A Backward Particle Interpretation of Feynman-Kac Formulae M2AN (2010). (joint work with A. Doucet & S.S. Singh) ◮ On the concentration of interacting processes. Foundations & Trends in Machine Learning [170p.] (2012). (joint work with Peng Hu & Liming Wu) [+ Refs] ◮ More references on the website : Feynman-Kac models and particle systems [+ Links]

  2. Introduction Feynman-Kac models Some rare event models Stochastic analysis

  3. Introduction Some basic notation Importance sampling Acceptance-rejection samplers Feynman-Kac models Some rare event models Stochastic analysis

  4. Basic notation P ( E ) probability meas., B ( E ) bounded functions on E . � ◮ ( µ, f ) ∈ P ( E ) × B ( E ) − → µ ( f ) = µ ( dx ) f ( x ) ◮ Q ( x 1 , dx 2 ) integral operators x 1 ∈ E 1 � x 2 ∈ E 2 � Q ( f )( x 1 ) = Q ( x 1 , dx 2 ) f ( x 2 ) � ⇒ [ µ Q ]( f ) = µ [ Q ( f )] ) [ µ Q ]( dx 2 ) = µ ( dx 1 ) Q ( x 1 , dx 2 ) (= ◮ Boltzmann-Gibbs transformation [Positive and bounded potential function G ] 1 �→ µ ( dx ) Ψ G ( µ )( dx ) = µ ( G ) G ( x ) µ ( dx )

  5. Importance sampling and optimal twisted measures P ( X ∈ A ) = P X ( A ) = 10 − 10 � Find P Y t.q. P Y ( A ) = P ( Y ∈ A ) ≃ 1 � Crude Monte Carlo sampling Y i i.i.d. P Y � d P X � � X ( A ) := 1 d P X = P X ( A ) ≃ P N ( Y i ) 1 A ( Y i ) P Y 1 A d P Y N d P Y 1 ≤ i ≤ N Optimal twisted measure = Conditional distribution Variance = 0 ⇐ ⇒ P Y = Ψ 1 A ( P X ) = Law ( X | X ∈ A ) ⇓ Perfect or MCMC samplers =acceptance-rejection techniques BUT Very often with very small acceptance rates

  6. Conditional distributions and Feynman-Kac models Example : Markov chain models X n restricted to subsets A n X = ( X 0 , . . . , X n ) ∈ A = ( A 0 × . . . × A n ) Conditional distributions Law ( X | X ∈ A ) = Law (( X 0 , . . . , X n ) | X p ∈ A p , p < n ) = Q n and Proba ( X p ∈ A p , p < n ) = Z n

  7. Conditional distributions and Feynman-Kac models Example : Markov chain models X n restricted to subsets A n X = ( X 0 , . . . , X n ) ∈ A = ( A 0 × . . . × A n ) Conditional distributions Law ( X | X ∈ A ) = Law (( X 0 , . . . , X n ) | X p ∈ A p , p < n ) = Q n and Proba ( X p ∈ A p , p < n ) = Z n given by the Feynman-Kac measures     � d Q n := 1 G p ( X p )  d P n Z n  0 ≤ p < n with P n = Law ( X 0 , . . . , X n ) and G p = 1 A p , p < n

  8. Introduction Feynman-Kac models Nonlinear evolution equation Interacting particle samplers Continuous time models Particle estimates Some rare event models Stochastic analysis

  9. Feynman-Kac models ( general G n ( X n ) & X n ∈ E n ) Flow of n -marginals   �  f ( X n )  η n ( f ) = γ n ( f ) /γ n (1) with γ n ( f ) := E G p ( X p ) 0 ≤ p < n ⇓ ( γ n (1) = Z n ) Nonlinear evolution equation : η n +1 = Ψ G n ( η n ) M n +1 Z n +1 η n ( G n ) × Z n = with the Markov transitions M n +1 ( x n , dx n +1 ) = P ( X n +1 ∈ dx n +1 | X n = x n ) Note : [ X n = ( X ′ 0 , . . . , X ′ n ) & G n ( X n ) = G ′ ( X ′ ⇒ η n = Q ′ n )] = n

  10. Interacting particle samplers Nonlinear evolution equation : η n +1 = Ψ G n ( η n ) M n +1 Z n +1 = η n ( G n ) × Z n � Sequential particle simulation technique M n -propositions ⊕ G n -acceptance-rejection with recycling � � Genetic type branching particle model G n − selection M n − mutation → � ξ n = ( � ξ n = ( ξ i ξ i → ξ n +1 = ( ξ i n ) 1 ≤ i ≤ N − − − − − − − n ) 1 ≤ i ≤ N − − − − − − − n +1 ) 1 ≤ i ≤ N Note : [ X n = ( X ′ 0 , . . . , X ′ n ) & G n ( X n ) = G ′ ( X ′ ⇒ Genealogical tree model n )] =

  11. ⊃ Continuous time models ⊃ Langevin diffusions � t n +1 X n := X ′ V s ( X ′ & G n ( X n ) = exp s ) ds [ t n , t n +1 [ t n OR Euler approximations (Langevin diff. � Metropolis-Hasting moves) OR Fully continuous time particle models � Schr¨ odinger operators d t = L ′ dt γ t ( f ) = γ t ( L V L V t ( f )) t + V t with � � � t � t V s ( X ′ γ t (1) = E exp s ) ds = exp η s ( V s ) ds with η t = γ t /γ t (1) 0 0

  12. ⊃ Continuous time models ⊃ Langevin diffusions � t n +1 X n := X ′ V s ( X ′ & G n ( X n ) = exp s ) ds [ t n , t n +1 [ t n OR Euler approximations (Langevin diff. � Metropolis-Hasting moves) OR Fully continuous time particle models � Schr¨ odinger operators d t = L ′ dt γ t ( f ) = γ t ( L V L V t ( f )) t + V t with � � � t � t V s ( X ′ γ t (1) = E exp s ) ds = exp η s ( V s ) ds with η t = γ t /γ t (1) 0 0 d Master equation η t = Law ( X t ) ⇒ dt η t ( f ) = η t ( L t ,η t ( f )) (ex. : V t = − U t ≤ 0) � L t ,η t ( f )( x ) = L ′ t ( f )( x ) + U t ( x ) ( f ( y ) − f ( x )) η t ( dy ) � �� � � �� � � �� � free exploration acceptance rate interacting jump law ⇓ Particle model: Survival-acceptance rates ⊕ Recycling jumps

  13. Genealogical tree evolution ( N , n ) = (3 , 3) ✲ • ✲ • = • • • ✲ ✲ • • • • = • ✲ ✲ ✲ ✲ • • • • = • ✲ Some particle estimates ( δ a ( dx ) ↔ δ ( x − a ) dx ) � n = 1 ◮ Individuals ξ i n ”almost” iid with law η n ≃ η N 1 ≤ i ≤ N δ ξ i N n � ◮ Ancestral lines ”almost” iid with law Q n ≃ 1 1 ≤ i ≤ N δ line n ( i ) N ◮ Normalizing constants � � η p ( G p ) ≃ N ↑∞ Z N η N Z n +1 = n +1 = p ( G p ) ( Unbiased ) 0 ≤ p ≤ n 0 ≤ p ≤ n

  14. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  15. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  16. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  17. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  18. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  19. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  20. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  21. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  22. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  23. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  24. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  25. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  26. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  27. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  28. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  29. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  30. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  31. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  32. � n := 1 Graphical illustration : η n ≃ η N 1 ≤ i ≤ N δ ξ i N n

  33. How to use the full ancestral tree model ? hyp G n − 1 ( x n − 1 ) M n ( x n − 1 , dx n ) = H n ( x n − 1 , x n ) ν n ( dx n ) ⇒ Backward Markov model : Q n ( d ( x 0 , . . . , x n )) = η n ( dx n ) M n ,η n − 1 ( x n , dx n − 1 ) . . . M 1 ,η 0 ( x 1 , dx 0 ) � �� � ∝ η n − 1 ( dx n − 1 ) H n ( x n − 1 , x n )

  34. How to use the full ancestral tree model ? hyp G n − 1 ( x n − 1 ) M n ( x n − 1 , dx n ) = H n ( x n − 1 , x n ) ν n ( dx n ) ⇒ Backward Markov model : Q n ( d ( x 0 , . . . , x n )) = η n ( dx n ) M n ,η n − 1 ( x n , dx n − 1 ) . . . M 1 ,η 0 ( x 1 , dx 0 ) � �� � ∝ η n − 1 ( dx n − 1 ) H n ( x n − 1 , x n ) Particle approximation Q N n ( d ( x 0 , . . . , x n )) = η N n ( dx n ) M n ,η N n − 1 ( x n , dx n − 1 ) . . . M 1 ,η N 0 ( x 1 , dx 0 ) � 1 Ex.: Additive functionals f n ( x 0 , . . . , x n ) = 0 ≤ p ≤ n f p ( x p ) n +1 � 1 Q N η N n ( f n ) := n − 1 . . . M p +1 ,η N p ( f p ) n M n ,η N n + 1 � �� � 0 ≤ p ≤ n matrix operations

  35. Introduction Feynman-Kac models Some rare event models Self avoiding walks Level crossing probabilities Particle absorption models Quasi-invariant measures Doob h -processes Semigroup gradient estimates Boltzmann-Gibbs measures Stochastic analysis

  36. Self avoiding walks in Z d Feynman-Kac model with X n = ( X 0 , . . . , X n ) & G n ( X n ) = 1 X n �∈{ X 0 ,..., X n − 1 } � Conditional distributions Q n = Law (( X 0 , . . . , X n ) | X p � = X q , ∀ 0 ≤ p < q < n ) and Z n = Proba ( X p � = X q , ∀ 0 ≤ p < q < n )

Recommend


More recommend