almost contact metric 3 structures with torsion
play

Almost contact metric 3structures with torsion Some preliminaries - PowerPoint PPT Presentation

WORKSHOP ON DIRAC OPERATORS AND SPECIAL GEOMETRIES CASTLE RAUISCHHOLZHAUSEN, 2427 SEPTEMBER 2009 University of Bari, Italy Almost contact


  1. WORKSHOP ON “DIRAC OPERATORS AND SPECIAL GEOMETRIES” CASTLE RAUISCHHOLZHAUSEN, 24�27 SEPTEMBER 2009 ������������������������������ � University of Bari, Italy Almost contact metric 3�structures with torsion

  2. Some preliminaries on almost contact manifolds. An ����������������������� is a (2 n +1)�dimensional manifold M endowed with a field φ of endomorphisms of the tangent spaces a global 1�form η a global vector field ξ , called Reeb vector field such that φ 2 = –I + η ⊗ ξ and η ( ξ ) = 1.

  3. Given an almost contact manifold ( M 2 n +1 , φ , ξ , η ), one can define on M 2 n +1 × � an almost complex structure J by setting J ( X , f d / dt ) = ( φX – fξ , η ( X ) d / dt ) Γ( TM 2 n +1 ) and f C ∞ ( M 2 n +1 × ). for all X

  4. Given an almost contact manifold ( M 2 n +1 , φ , ξ , η ), one can define on M 2 n +1 × � an almost complex structure J by setting J ( X , f d / dt ) = ( φX – fξ , η ( X ) d / dt ) Γ( TM 2 n +1 ) and f C ∞ ( M 2 n +1 × ). for all X Then ( φ , ξ , η ) is said to be ������ if the almost complex structure J is integrable, that is [ J , J ] 0. This happens if and only if N := [ φ , φ ] + 2 η ⊗ ξ 0.

  5. Given an almost contact structure ( φ , ξ , η ) on M , there exists a Riemannian metric g such that g ( φX , φY ) = g ( X , Y ) – η ( X ) η ( Y ) for all X , Y Γ( TM ). � � �

  6. Given an almost contact structure ( φ , ξ , η ) on M , there exists a Riemannian metric g such that g ( φX , φY ) = g ( X , Y ) – η ( X ) η ( Y ) for all X , Y Γ( TM ). If we fix such a metric, ( M , φ , ξ , η , g ) is called an ������� �������� ��������������� and we can define the fundamental 2�form Φ by Φ( X , Y ) = g ( X , φY ). � � �

  7. Given an almost contact structure ( φ , ξ , η ) on M , there exists a Riemannian metric g such that g ( φX , φY ) = g ( X , Y ) – η ( X ) η ( Y ) for all X , Y Γ( TM ). If we fix such a metric, ( M , φ , ξ , η , g ) is called an ������� �������� ��������������� and we can define the fundamental 2�form Φ by Φ( X , Y ) = g ( X , φY ). An almost contact metric manifold such that N 0 and d η = Φ is said to be a ����������������� ( α �Sasakian if d η = α Φ). � � �

  8. Given an almost contact structure ( φ , ξ , η ) on M , there exists a Riemannian metric g such that g ( φX , φY ) = g ( X , Y ) – η ( X ) η ( Y ) for all X , Y Γ( TM ). If we fix such a metric, ( M , φ , ξ , η , g ) is called an ������� �������� ��������������� and we can define the fundamental 2�form Φ by Φ( X , Y ) = g ( X , φY ). An almost contact metric manifold such that N 0 and d η = Φ is said to be a ����������������� ( α �Sasakian if d η = α Φ). An almost contact metric manifold such that N 0 and dΦ = 0, d η = 0 is said to be a ��������������������� . � � �

  9. ����������� (Blair, J. Differential Geom. 1967 ). � 0 then ( M 2 n +1 , φ , ξ , η , g ) is said to be a ������ If dΦ = 0 and N ����������������� . �

  10. ����������� (Blair, J. Differential Geom. 1967 ). � 0 then ( M 2 n +1 , φ , ξ , η , g ) is said to be a ������ If dΦ = 0 and N ����������������� . � An almost contact manifold ( M 2 n +1 , φ , ξ , η ) is said to be of rank 2 p if (d η ) p ≠0 and η (d η ) p =0 on M 2 n +1 , for some p ≤ n rank 2 p +1 if η (d η ) p ≠0 and (d η ) p +1 =0 on M 2 n +1 , for some p ≤ n . � � � � � �

  11. ����������� (Blair, J. Differential Geom. 1967 ). � 0 then ( M 2 n +1 , φ , ξ , η , g ) is said to be a ������ If dΦ = 0 and N ����������������� . � An almost contact manifold ( M 2 n +1 , φ , ξ , η ) is said to be of rank 2 p if (d η ) p ≠0 and η (d η ) p =0 on M 2 n +1 , for some p ≤ n rank 2 p +1 if η (d η ) p ≠0 and (d η ) p +1 =0 on M 2 n +1 , for some p ≤ n . �������� (Blair, Tanno) No quasi�Sasakian manifold has even rank. �

  12. ����������� (Blair, J. Differential Geom. 1967 ). � 0 then ( M 2 n +1 , φ , ξ , η , g ) is said to be a ������ If dΦ = 0 and N ����������������� . � An almost contact manifold ( M 2 n +1 , φ , ξ , η ) is said to be of rank 2 p if (d η ) p ≠0 and η (d η ) p =0 on M 2 n +1 , for some p ≤ n rank 2 p +1 if η (d η ) p ≠0 and (d η ) p +1 =0 on M 2 n +1 , for some p ≤ n . �������� (Blair, Tanno) No quasi�Sasakian manifold has even rank. Remarkable subclasses of quasi�Sasakian manifolds are given by ������������������ (d η =Φ, maximal rank 2 n +1) ���������������������� (d η =0, dΦ=0, minimal rank 1).

  13. 3�structures An �������������������������� on a manifold M is given by three distinct almost contact structures ( φ 1 , ξ 1 , η 1 ), ( φ 2 , ξ 2 , η 2 ), ( φ 3 , ξ 3 , η 3 ) on M satisfying the following relations, for an even permutation ( i , j , k ) of {1,2,3}, φ k = φ i φ j – η j ⊗ ξ i = – φ j φ i + η i ⊗ ξ j , ξ k = φ i ξ j = – φ j ξ i , η k = η i φ j = – η j φ i .

  14. 3�structures An �������������������������� on a manifold M is given by three distinct almost contact structures ( φ 1 , ξ 1 , η 1 ), ( φ 2 , ξ 2 , η 2 ), ( φ 3 , ξ 3 , η 3 ) on M satisfying the following relations, for an even permutation ( i , j , k ) of {1,2,3}, φ k = φ i φ j – η j ⊗ ξ i = – φ j φ i + η i ⊗ ξ j , ξ k = φ i ξ j = – φ j ξ i , η k = η i φ j = – η j φ i . One can prove that (Kuo, Udriste) dim( M ) = 4 n +3 for some n 1, the structural group of TM is reducible to Sp ( n ) × I 3 .

  15. 3�structures An �������������������������� on a manifold M is given by three distinct almost contact structures ( φ 1 , ξ 1 , η 1 ), ( φ 2 , ξ 2 , η 2 ), ( φ 3 , ξ 3 , η 3 ) on M satisfying the following relations, for an even permutation ( i , j , k ) of {1,2,3}, φ k = φ i φ j – η j ⊗ ξ i = – φ j φ i + η i ⊗ ξ j , ξ k = φ i ξ j = – φ j ξ i , η k = η i φ j = – η j φ i . One can prove that (Kuo, Udriste) dim( M ) = 4 n +3 for some n 1, the structural group of TM is reducible to Sp ( n ) × I 3 . If each almost contact structure is normal , then the 3�structure is said to be ������������ .

  16. Moreover, there exists a Riemannian metric g compatible with each almost contact structure ( φ i , ξ i , η i ), i.e. satisfying g ( φ i X , φ i Y ) = g ( X , Y ) – η i ( X ) η i ( Y ) for each i {1,2,3}. Then we say that ( M 4 n +3 , φ i , ξ i , η i , g ) is an ������������������������ �������� .

  17. Moreover, there exists a Riemannian metric g compatible with each almost contact structure ( φ i , ξ i , η i ), i.e. satisfying g ( φ i X , φ i Y ) = g ( X , Y ) – η i ( X ) η i ( Y ) for each i {1,2,3}. Then we say that ( M 4 n +3 , φ i , ξ i , η i , g ) is an ������������������������ �������� . Remarkable examples of (hyper�normal) almost 3�contact metric manifolds are given by �������������������� (each structure ( φ i , ξ i , η i ) is Sasakian) �������������� � ��������� � (each structure ( φ i , ξ i , η i ) is cosym� plectic) �������������������������� (each structure ( φ i , ξ i , η i ) is quasi� Sasakian).

  18. “Foliated” 3�structures Let ( M 4 n +3 , φ i , ξ i , η i , g ) be an almost 3�contact (metric) manifold. Putting �� := span{ ξ 1 , ξ 2 , ξ 3 } and �� := ker( η 1 ) ∩ ker( η 2 ) ∩ ker( η 3 ), we have the (orthogonal) decomposition T p M = � p ⊕ � p . � is called Reeb distribution (or vertical distribution ), whereas � horizontal distribution . � � � � � �

  19. “Foliated” 3�structures Let ( M 4 n +3 , φ i , ξ i , η i , g ) be an almost 3�contact (metric) manifold. Putting �� := span{ ξ 1 , ξ 2 , ξ 3 } and �� := ker( η 1 ) ∩ ker( η 2 ) ∩ ker( η 3 ), we have the (orthogonal) decomposition T p M = � p ⊕ � p . � is called Reeb distribution (or vertical distribution ), whereas � horizontal distribution . �������� (Kuo�Tachibana, 1970) Is the distribution � integrable?

Recommend


More recommend