rank metric codes and related structures
play

Rank Metric Codes and related Structures Yue Zhou July 5, 2017 The - PowerPoint PPT Presentation

Rank Metric Codes and related Structures Yue Zhou July 5, 2017 The 2nd International Workshop on Boolean Functions and their Applications (BFA) Outline Introduction Maximum rank distance codes Quadratic bent-Negabent functions Vectorial


  1. Gabidulin codes Definition A linearized polynomial ( q -polynomial) is in F q n [ X ] of the form a 0 X + a 1 X q + · · · + a i X q i + · · · . Let L ( n , q ) [ X ] denote all linearized polynomials in F q n [ X ]. • L ( n , q ) [ X ] / ( X q n − X ) ∼ = End F q ( F q n ). • Gabidulin codes ( k = n − d + 1, m = n ) G = { a 0 X + a 1 X q + . . . a k − 1 X q k − 1 : a 0 , a 1 , . . . , a k − 1 ∈ F q n } . 6/34

  2. Gabidulin codes Definition A linearized polynomial ( q -polynomial) is in F q n [ X ] of the form a 0 X + a 1 X q + · · · + a i X q i + · · · . Let L ( n , q ) [ X ] denote all linearized polynomials in F q n [ X ]. • L ( n , q ) [ X ] / ( X q n − X ) ∼ = End F q ( F q n ). • Gabidulin codes ( k = n − d + 1, m = n ) G = { a 0 X + a 1 X q + . . . a k − 1 X q k − 1 : a 0 , a 1 , . . . , a k − 1 ∈ F q n } . ⊲ For each f ∈ G , f has at most q k − 1 roots. 6/34

  3. Gabidulin codes Definition A linearized polynomial ( q -polynomial) is in F q n [ X ] of the form a 0 X + a 1 X q + · · · + a i X q i + · · · . Let L ( n , q ) [ X ] denote all linearized polynomials in F q n [ X ]. • L ( n , q ) [ X ] / ( X q n − X ) ∼ = End F q ( F q n ). • Gabidulin codes ( k = n − d + 1, m = n ) G = { a 0 X + a 1 X q + . . . a k − 1 X q k − 1 : a 0 , a 1 , . . . , a k − 1 ∈ F q n } . ⊲ For each f ∈ G , f has at most q k − 1 roots. ⊲ # G = q nk = q n ( m − d +1) with d = m − k + 1. 6/34

  4. Gabidulin codes Definition A linearized polynomial ( q -polynomial) is in F q n [ X ] of the form a 0 X + a 1 X q + · · · + a i X q i + · · · . Let L ( n , q ) [ X ] denote all linearized polynomials in F q n [ X ]. • L ( n , q ) [ X ] / ( X q n − X ) ∼ = End F q ( F q n ). • Gabidulin codes ( k = n − d + 1, m = n ) G = { a 0 X + a 1 X q + . . . a k − 1 X q k − 1 : a 0 , a 1 , . . . , a k − 1 ∈ F q n } . ⊲ For each f ∈ G , f has at most q k − 1 roots. ⊲ # G = q nk = q n ( m − d +1) with d = m − k + 1. ⊲ Gabidulin codes are F q n -linear MRD codes. 6/34

  5. Known families of MRD codes ( d = m = n ) When m = n = d ( k = 1), G = { a 0 ∗ X : a 0 ∈ F q n } . 7/34

  6. Known families of MRD codes ( d = m = n ) When m = n = d ( k = 1), G = { a 0 ∗ X : a 0 ∈ F q n } . MRD codes C and the following algebraic/geometric objects are equivalent. 7/34

  7. Known families of MRD codes ( d = m = n ) When m = n = d ( k = 1), G = { a 0 ∗ X : a 0 ∈ F q n } . MRD codes C and the following algebraic/geometric objects are equivalent. • (Pre)quasifield Q ; 7/34

  8. Known families of MRD codes ( d = m = n ) When m = n = d ( k = 1), G = { a 0 ∗ X : a 0 ∈ F q n } . MRD codes C and the following algebraic/geometric objects are equivalent. • (Pre)quasifield Q ; ⊲ When C is F q -linear, Q is a (pre)semifield. 7/34

  9. Known families of MRD codes ( d = m = n ) When m = n = d ( k = 1), G = { a 0 ∗ X : a 0 ∈ F q n } . MRD codes C and the following algebraic/geometric objects are equivalent. • (Pre)quasifield Q ; ⊲ When C is F q -linear, Q is a (pre)semifield. • Spreads. 7/34

  10. Known families of MRD codes ( d = m = n ) When m = n = d ( k = 1), G = { a 0 ∗ X : a 0 ∈ F q n } . MRD codes C and the following algebraic/geometric objects are equivalent. • (Pre)quasifield Q ; ⊲ When C is F q -linear, Q is a (pre)semifield. • Spreads. There are a considerable amount of inequivalent quasifields and semifields. 7/34

  11. Known families of MRD codes ( d = m = n ) When m = n = d ( k = 1), G = { a 0 ∗ X : a 0 ∈ F q n } . MRD codes C and the following algebraic/geometric objects are equivalent. • (Pre)quasifield Q ; ⊲ When C is F q -linear, Q is a (pre)semifield. • Spreads. There are a considerable amount of inequivalent quasifields and semifields. In particular, for q = 2 m , there are exponentially many inequivalent ones (Kantor). 7/34

  12. Known families of F q -linear MRD codes ( d ≤ m = n ) Let m , n , k , s ∈ Z + , gcd( n , s ) = 1, k < m and q a power of prime. 8/34

  13. Known families of F q -linear MRD codes ( d ≤ m = n ) Let m , n , k , s ∈ Z + , gcd( n , s ) = 1, k < m and q a power of prime. (generalized) twisted Gabidulin codes [Sheekey 2016]: 0 X q sk : a 0 , . . . , a k − 1 ∈ F q n } , H k , s ( η, h ) = { a 0 X + · · · + a k − 1 X q s ( k − 1) + η a q h where h ∈ Z + and η ∈ F q n is such that N q sn / q s ( η ) � = ( − 1) nk . 8/34

  14. Known families of F q -linear MRD codes ( d ≤ m = n ) Let m , n , k , s ∈ Z + , gcd( n , s ) = 1, k < m and q a power of prime. (generalized) twisted Gabidulin codes [Sheekey 2016]: 0 X q sk : a 0 , . . . , a k − 1 ∈ F q n } , H k , s ( η, h ) = { a 0 X + · · · + a k − 1 X q s ( k − 1) + η a q h where h ∈ Z + and η ∈ F q n is such that N q sn / q s ( η ) � = ( − 1) nk . • H k , s (0 , � ) is a Gabidulin code [Delsarte 1978], [Gabidulin 1985], [Kshevetskiy and Gabidulin 2005]. 8/34

  15. Known families of F q -linear MRD codes ( d ≤ m = n ) Let m , n , k , s ∈ Z + , gcd( n , s ) = 1, k < m and q a power of prime. (generalized) twisted Gabidulin codes [Sheekey 2016]: 0 X q sk : a 0 , . . . , a k − 1 ∈ F q n } , H k , s ( η, h ) = { a 0 X + · · · + a k − 1 X q s ( k − 1) + η a q h where h ∈ Z + and η ∈ F q n is such that N q sn / q s ( η ) � = ( − 1) nk . • H k , s (0 , � ) is a Gabidulin code [Delsarte 1978], [Gabidulin 1985], [Kshevetskiy and Gabidulin 2005]. • When q = 2, η must be 0. 8/34

  16. Known families of F q -linear MRD codes ( d ≤ m = n ) Let m , n , k , s ∈ Z + , gcd( n , s ) = 1, k < m and q a power of prime. (generalized) twisted Gabidulin codes [Sheekey 2016]: 0 X q sk : a 0 , . . . , a k − 1 ∈ F q n } , H k , s ( η, h ) = { a 0 X + · · · + a k − 1 X q s ( k − 1) + η a q h where h ∈ Z + and η ∈ F q n is such that N q sn / q s ( η ) � = ( − 1) nk . • H k , s (0 , � ) is a Gabidulin code [Delsarte 1978], [Gabidulin 1985], [Kshevetskiy and Gabidulin 2005]. • When q = 2, η must be 0. • The equivalence between different members and the automorphism groups can be completely determined (Lunardon, Trombetti, Z) 8/34

  17. Known families of MRD codes ( d ≤ m = n ) Nonlinear families: 9/34

  18. Known families of MRD codes ( d ≤ m = n ) Nonlinear families: 1. Size q 2 n [Cossidente, Marino, Pavese 2016] [Durante, Siciliano]. 9/34

  19. Known families of MRD codes ( d ≤ m = n ) Nonlinear families: 1. Size q 2 n [Cossidente, Marino, Pavese 2016] [Durante, Siciliano]. 2. Slight modifications of twisted Gabidulin codes [Otal and ¨ Ozbudak 2016]. 9/34

  20. Known families of MRD codes ( d ≤ m = n ) Nonlinear families: 1. Size q 2 n [Cossidente, Marino, Pavese 2016] [Durante, Siciliano]. 2. Slight modifications of twisted Gabidulin codes [Otal and ¨ Ozbudak 2016]. Question Find more new MRD codes for d ≤ m = n . 9/34

  21. Known families of MRD codes ( d ≤ m < n ) 1. Puncturing n × n MRD codes F : 10/34

  22. Known families of MRD codes ( d ≤ m < n ) 1. Puncturing n × n MRD codes F : Take F q -linearly independent elements α 1 , . . . , α m ∈ F q n . Then C = { ( f ( α 1 ) , · · · , f ( α m )) T : f ∈ F} 10/34

  23. Known families of MRD codes ( d ≤ m < n ) 1. Puncturing n × n MRD codes F : Take F q -linearly independent elements α 1 , . . . , α m ∈ F q n . Then C = { ( f ( α 1 ) , · · · , f ( α m )) T : f ∈ F} 2. For k = m − d + 1, randomly generate MRD codes [Neri,Trautmann,Randrianarisoa,Rosenthal,2016]. Pr > 1 − kq km − n . 10/34

  24. Known families of MRD codes ( d ≤ m < n ) 1. Puncturing n × n MRD codes F : Take F q -linearly independent elements α 1 , . . . , α m ∈ F q n . Then C = { ( f ( α 1 ) , · · · , f ( α m )) T : f ∈ F} 2. For k = m − d + 1, randomly generate MRD codes [Neri,Trautmann,Randrianarisoa,Rosenthal,2016]. Pr > 1 − kq km − n . 3. Twisting construction using chains of subfields [Puchinger, Nielsen, Sheekey]. 10/34

  25. Known families of MRD codes ( d ≤ m < n ) 1. Puncturing n × n MRD codes F : Take F q -linearly independent elements α 1 , . . . , α m ∈ F q n . Then C = { ( f ( α 1 ) , · · · , f ( α m )) T : f ∈ F} 2. For k = m − d + 1, randomly generate MRD codes [Neri,Trautmann,Randrianarisoa,Rosenthal,2016]. Pr > 1 − kq km − n . 3. Twisting construction using chains of subfields [Puchinger, Nielsen, Sheekey]. 4. Using maximum scattered linear sets [Csajb´ ok, Marino, Polverino, Zullo]. 10/34

  26. Known families of MRD codes ( d ≤ m < n ) 1. Puncturing n × n MRD codes F : Take F q -linearly independent elements α 1 , . . . , α m ∈ F q n . Then C = { ( f ( α 1 ) , · · · , f ( α m )) T : f ∈ F} 2. For k = m − d + 1, randomly generate MRD codes [Neri,Trautmann,Randrianarisoa,Rosenthal,2016]. Pr > 1 − kq km − n . 3. Twisting construction using chains of subfields [Puchinger, Nielsen, Sheekey]. 4. Using maximum scattered linear sets [Csajb´ ok, Marino, Polverino, Zullo]. 5. Other constructions [Trautmann, Marshall 2016]. 10/34

  27. Known families of MRD codes ( d ≤ m < n ) How many inequivalent MRD codes are there in F m × n ? q 11/34

  28. Known families of MRD codes ( d ≤ m < n ) How many inequivalent MRD codes are there in F m × n ? q • By looking at Gabidulin codes for different U = � α 1 , · · · , α m � , we [Schmidt, Z] can show that this number ( q − 1) [ n m ] q ≥ n ( q n − 1) . 11/34

  29. Known families of MRD codes ( d ≤ m < n ) How many inequivalent MRD codes are there in F m × n ? q • By looking at Gabidulin codes for different U = � α 1 , · · · , α m � , we [Schmidt, Z] can show that this number ( q − 1) [ n m ] q ≥ n ( q n − 1) . • Proved by investigating their right nuclei and middle nuclei. 11/34

  30. Nuclei of rank metric codes Definition For rank metric codes in K m × n : Right nucleus: N r ( C ) = { Y ∈ K n × n : CY ∈ C for all C ∈ C} . 12/34

  31. Nuclei of rank metric codes Definition For rank metric codes in K m × n : Right nucleus: N r ( C ) = { Y ∈ K n × n : CY ∈ C for all C ∈ C} . Middle nucleus: N m ( C ) = { Z ∈ K m × m : ZC ∈ C for all C ∈ C} . 12/34

  32. Nuclei of rank metric codes Definition For rank metric codes in K m × n : Right nucleus: N r ( C ) = { Y ∈ K n × n : CY ∈ C for all C ∈ C} . Middle nucleus: N m ( C ) = { Z ∈ K m × m : ZC ∈ C for all C ∈ C} . • When C is a spreadset defining a semifield S , then N m ( C ) and N r ( C ) correspond to the middle nucleus and the right nucleus of S respectively. 12/34

  33. Nuclei of rank metric codes Definition For rank metric codes in K m × n : Right nucleus: N r ( C ) = { Y ∈ K n × n : CY ∈ C for all C ∈ C} . Middle nucleus: N m ( C ) = { Z ∈ K m × m : ZC ∈ C for all C ∈ C} . • When C is a spreadset defining a semifield S , then N m ( C ) and N r ( C ) correspond to the middle nucleus and the right nucleus of S respectively. • For MRD codes with d < m , we can also define the left nucleus which is always K . 12/34

  34. Nuclei of rank metric codes Definition For rank metric codes in K m × n : Right nucleus: N r ( C ) = { Y ∈ K n × n : CY ∈ C for all C ∈ C} . Middle nucleus: N m ( C ) = { Z ∈ K m × m : ZC ∈ C for all C ∈ C} . • When C is a spreadset defining a semifield S , then N m ( C ) and N r ( C ) correspond to the middle nucleus and the right nucleus of S respectively. • For MRD codes with d < m , we can also define the left nucleus which is always K . • Not invariant for nonlinear rank metric codes. 12/34

  35. Nuclei of rank metric codes • For two equivalent linear rank metric codes C 1 and C 2 in K m × n , their right (resp. middle) nuclei are also equivalent. 13/34

  36. Nuclei of rank metric codes • For two equivalent linear rank metric codes C 1 and C 2 in K m × n , their right (resp. middle) nuclei are also equivalent. C 2 = { AX γ B : X ∈ C 1 } ⇒ Z ∈ N m ( C 1 ) iff AZ γ A − 1 ∈ N m ( C 2 ) 13/34

  37. Nuclei of rank metric codes • For two equivalent linear rank metric codes C 1 and C 2 in K m × n , their right (resp. middle) nuclei are also equivalent. C 2 = { AX γ B : X ∈ C 1 } ⇒ Z ∈ N m ( C 1 ) iff AZ γ A − 1 ∈ N m ( C 2 ) If γ = id and C 1 = C 2 , then A ∈ N GL ( m , q ) ( N m ( C )). 13/34

  38. Nuclei of rank metric codes • For two equivalent linear rank metric codes C 1 and C 2 in K m × n , their right (resp. middle) nuclei are also equivalent. C 2 = { AX γ B : X ∈ C 1 } ⇒ Z ∈ N m ( C 1 ) iff AZ γ A − 1 ∈ N m ( C 2 ) If γ = id and C 1 = C 2 , then A ∈ N GL ( m , q ) ( N m ( C )). • For (generalized) Gabidulin codes G s = { a 0 X + a 1 X q s + . . . a k − 1 X q s ( k − 1) : a 0 , . . . , a k − 1 ∈ F q n } , N r ( G s ) = { g : g ◦ f ∈ G s for all f ∈ G s } ∼ = F q n , N m ( G s ) = { g : f ◦ g ∈ G s for all f ∈ G s } ∼ = F q n . 13/34

  39. Quadratic bent-Negabent functions

  40. Maximum rank metric codes with restrictions • Restrictions: Symmetric, symplectic, hermitian... 14/34

  41. Maximum rank metric codes with restrictions • Restrictions: Symmetric, symplectic, hermitian... • Given minimum distance d , the upper bound of C is not completely clear. 14/34

  42. Maximum rank metric codes with restrictions • Restrictions: Symmetric, symplectic, hermitian... • Given minimum distance d , the upper bound of C is not completely clear. For instance: 14/34

  43. Maximum rank metric codes with restrictions • Restrictions: Symmetric, symplectic, hermitian... • Given minimum distance d , the upper bound of C is not completely clear. For instance: • Let C be an additive d -code consisting of m × m symmetric matrix over F q . If 2 ∤ q (2 | q and 2 ∤ d or d = m ), then � q m ( m − d +2) / 2 , if m − d is even; # C ≤ q ( m +1)( m − d +1) / 2 , if m − d is odd. 14/34

  44. Maximum rank metric codes with restrictions • Restrictions: Symmetric, symplectic, hermitian... • Given minimum distance d , the upper bound of C is not completely clear. For instance: • Let C be an additive d -code consisting of m × m symmetric matrix over F q . If 2 ∤ q (2 | q and 2 ∤ d or d = m ), then � q m ( m − d +2) / 2 , if m − d is even; # C ≤ q ( m +1)( m − d +1) / 2 , if m − d is odd. • Proved by using association schemes. The upper bound is tight. (Schmidt 2010, 2015) 14/34

  45. • Quadratic APN functions, AB functions, (vectorial) bent functions... can be considered as rank metric codes with special properties. 15/34

  46. • Quadratic APN functions, AB functions, (vectorial) bent functions... can be considered as rank metric codes with special properties. • f : F n p → F m p is quadratic if δ f , a : x �→ f ( x + a ) − f ( x ) − f ( a ) is F p -linear for all a . 15/34

  47. • Quadratic APN functions, AB functions, (vectorial) bent functions... can be considered as rank metric codes with special properties. • f : F n p → F m p is quadratic if δ f , a : x �→ f ( x + a ) − f ( x ) − f ( a ) is F p -linear for all a . • Quadratic APN: kernel of δ f , a is of dimension 1 for a ∈ F ∗ 2 n . 15/34

  48. • Quadratic APN functions, AB functions, (vectorial) bent functions... can be considered as rank metric codes with special properties. • f : F n p → F m p is quadratic if δ f , a : x �→ f ( x + a ) − f ( x ) − f ( a ) is F p -linear for all a . • Quadratic APN: kernel of δ f , a is of dimension 1 for a ∈ F ∗ 2 n . • { δ f , a : a ∈ F 2 n } is a subspace of binary n × n matrices of rank n − 1. 15/34

  49. • Quadratic APN functions, AB functions, (vectorial) bent functions... can be considered as rank metric codes with special properties. • f : F n p → F m p is quadratic if δ f , a : x �→ f ( x + a ) − f ( x ) − f ( a ) is F p -linear for all a . • Quadratic APN: kernel of δ f , a is of dimension 1 for a ∈ F ∗ 2 n . • { δ f , a : a ∈ F 2 n } is a subspace of binary n × n matrices of rank n − 1. • Quadratic AB: the set of alternating bilinear forms { Tr ( c ( f ( x + y ) − f ( x ) − f ( y ))) : c ∈ F ∗ 2 n } defines a subspace of alternating binary n × n matrices of rank n − 1. 15/34

  50. • Quadratic APN functions, AB functions, (vectorial) bent functions... can be considered as rank metric codes with special properties. • f : F n p → F m p is quadratic if δ f , a : x �→ f ( x + a ) − f ( x ) − f ( a ) is F p -linear for all a . • Quadratic APN: kernel of δ f , a is of dimension 1 for a ∈ F ∗ 2 n . • { δ f , a : a ∈ F 2 n } is a subspace of binary n × n matrices of rank n − 1. • Quadratic AB: the set of alternating bilinear forms { Tr ( c ( f ( x + y ) − f ( x ) − f ( y ))) : c ∈ F ∗ 2 n } defines a subspace of alternating binary n × n matrices of rank n − 1. • See Edel and Dempwolff’s work: Nuclei, dimensional dual hyperovals . . . 15/34

  51. Quadratic bent functions For f : F n 2 → F 2 , 16/34

  52. Quadratic bent functions For f : F n 2 → F 2 , • it is bent if x �→ f ( x + a ) − f ( x ) is balanced for all nonzero a ( n has to be even). 16/34

  53. Quadratic bent functions For f : F n 2 → F 2 , • it is bent if x �→ f ( x + a ) − f ( x ) is balanced for all nonzero a ( n has to be even). • it is quadratic bent if the alternating matrix associated with f ( x + y ) − f ( x ) − f ( y ) is nonsingular. 16/34

  54. Quadratic bent functions For f : F n 2 → F 2 , • it is bent if x �→ f ( x + a ) − f ( x ) is balanced for all nonzero a ( n has to be even). • it is quadratic bent if the alternating matrix associated with f ( x + y ) − f ( x ) − f ( y ) is nonsingular. • all quadratic bent functions are (extended affine) equivalent to f ( x 1 , · · · , x 2 m ) = x 1 x 2 + x 3 x 4 + · · · + x 2 m − 1 x 2 m .   0 1 . . . 0 0   1 0 . . . 0 0     . . . . ...   . . . . . . . .      0 0 . . . 0 1  0 0 . . . 1 0 16/34

  55. Quadratic bent-Negabent functions For f : F n 2 → F 2 , • it is quadratic negabent if the associated alternating matrix M is such that M + I is nonsingular. 17/34

  56. Quadratic bent-Negabent functions For f : F n 2 → F 2 , • it is quadratic negabent if the associated alternating matrix M is such that M + I is nonsingular. • How many quadratic bent-negabent functions? (Pott, Parker 2008) 17/34

  57. Quadratic bent-Negabent functions For f : F n 2 → F 2 , • it is quadratic negabent if the associated alternating matrix M is such that M + I is nonsingular. • How many quadratic bent-negabent functions? (Pott, Parker 2008) • The number of bent-negabent quadratic forms on F 2 m is 2 � m � m m − i � � 1 ( − 1) i 2 i ( i − 1) (2 2 k − 1 − 1) 2 . 2 m i 4 i =0 k =1 (Pott, Schmidt, Z 2016) 17/34

  58. Quadratic bent-Negabent functions Let X j stand for the n × n alternating matrices of rank j over F q and X = � X j = F n × n . q 18/34

  59. Quadratic bent-Negabent functions Let X j stand for the n × n alternating matrices of rank j over F q and X = � X j = F n × n . q • f is bent-negabent if and only if M and M + I + J are both nonsingular (Pott, Parker 2008). 18/34

  60. Quadratic bent-Negabent functions Let X j stand for the n × n alternating matrices of rank j over F q and X = � X j = F n × n . q • f is bent-negabent if and only if M and M + I + J are both nonsingular (Pott, Parker 2008). • M and M + I + J are both alternating. 18/34

  61. Quadratic bent-Negabent functions Let X j stand for the n × n alternating matrices of rank j over F q and X = � X j = F n × n . q • f is bent-negabent if and only if M and M + I + J are both nonsingular (Pott, Parker 2008). • M and M + I + J are both alternating. � � � { ( A , B ) ∈ X r × X s : A + B ∈ X k } � . • We count N X ( r , s , k ) = 18/34

  62. Quadratic bent-Negabent functions Let X j stand for the n × n alternating matrices of rank j over F q and X = � X j = F n × n . q • f is bent-negabent if and only if M and M + I + J are both nonsingular (Pott, Parker 2008). • M and M + I + J are both alternating. � � � { ( A , B ) ∈ X r × X s : A + B ∈ X k } � . • We count N X ( r , s , k ) = • # quadratic bent-negabent functions = N X ( n , n , n ) . | X n | 18/34

  63. Quadratic bent-Negabent functions • � � � { ( A , B ) ∈ X r × X s : A + B ∈ X k } � N X ( r , s , k ) = � � � � 1 = φ ( A ) φ ( B ) φ ( C ) . | X | A ∈ X r B ∈ X s C ∈ X k φ ∈ � X 19/34

  64. Quadratic bent-Negabent functions • � � � { ( A , B ) ∈ X r × X s : A + B ∈ X k } � N X ( r , s , k ) = � � � � 1 = φ ( A ) φ ( B ) φ ( C ) . | X | A ∈ X r B ∈ X s C ∈ X k φ ∈ � X • All X 0 , X 1 , · · · , X n form a partition of F n × n and it is a q translation scheme. 19/34

  65. Quadratic bent-Negabent functions • � � � { ( A , B ) ∈ X r × X s : A + B ∈ X k } � N X ( r , s , k ) = � � � � 1 = φ ( A ) φ ( B ) φ ( C ) . | X | A ∈ X r B ∈ X s C ∈ X k φ ∈ � X • All X 0 , X 1 , · · · , X n form a partition of F n × n and it is a q translation scheme. • � m 1 | � N X ( r , s , k ) = X i | P r ( i ) P s ( i ) P k ( i ) . | X | i =0 19/34

Recommend


More recommend