a passion for precision
play

A passion for precision Theodor W. Hnsch Max-Planck-Institute for - PowerPoint PPT Presentation

Stockholm 2005 A passion for precision Theodor W. Hnsch Max-Planck-Institute for Quantum Optics, Garching, and Ludwig-Maximilians-University, Munich Stockholm, Dec. 8, 2005 University of Heidelberg, 1964 - 1970 Ali Javan Bill Bennett


  1. Stockholm 2005

  2. A passion for precision Theodor W. Hänsch Max-Planck-Institute for Quantum Optics, Garching, and Ludwig-Maximilians-University, Munich Stockholm, Dec. 8, 2005

  3. University of Heidelberg, 1964 - 1970 Ali Javan Bill Bennett Vladilen Lethokov Venia Chebotaev Christoph Peter John Hall Schmelzer Toschek . . . Helium-Neon gas lasers Saturation spectroscopy without Doppler broadening Quantum interference in coupled 3-level systems

  4. University of Heidelberg, 1964 - 1970 Christoph Peter Schmelzer Toschek Helium-Neon gas lasers Saturation spectroscopy without Doppler broadening Quantum interference in coupled 3-level systems

  5. Stanford University, 1970 - 1986 Arthur L. Schawlow

  6. T.W.H., Optics and Photonics News February 2005

  7. Hydrogen Spectrum of H Balmer Spectrum x 15 000 T.W.Hänsch, I.S. Shahin, T.W. Hänsch, I.S. Shahin, and A.L. Schawlow, and A.L. Schawlow, Nature 235, 63 (1972) Nature 235 , 63 (1972)

  8. cesium clocks optical atomic clocks

  9. Hydrogen 1S-2S two-photon transition (natural line width: 1.3 Hz) T.W. Hänsch, S.A. Lee, R. Wallenstein, and C. Wieman, Phys. Rev. Lett. 34 , 307 (1975), ...

  10. Max-Planck-Institute for Quantum Optics, Garching, and Ludwig-Maximilians-University, Munich, 1986 -

  11. Hydrogen 1S-2S resonance Wasserstoff Spektrum 2S signal [cps] 530 Hz @ 243 nm # 13 !" / " = 4.3 10 n m ] @ 2 4 3 k H z i n g [ d e t u n

  12. R y d R b e r g c o n s t a n t ∞ T h e R y d b e r g c o n s t a n t i s d e t e r m i n e d p r i m a r i l y b y c o m p a r i Hydrogen 1S-2S two-photon transition s o n o f t h e o r y a n d e x p e r i m e n t f o r e n e r g y l e v e l s i n h y d r o g e n a n d d e u t e r i u m .  3 m e 1 1 α 2 ( 1 S 1 / 2 2 S 1 / 2 ) = ν H R ∞ c 1 + − −  4 m p 4 8 � 2  α 3 � 2 8 1 4 R p α α − 2 l n + − − · · ·  9 9 π λ C D i r a c ( 1 S 1 / 2 2 S 1 / 2 ) = 2 4 6 6 0 6 8 5 4 1 0 1 8 k H z − Q E D ( 1 S 1 / 2 2 S 1 / 2 ) = 7 1 2 4 7 3 6 k H z − − O t h e r ( 1 S 1 / 2 2 S 1 / 2 ) = − · · · ( 1 S 1 / 2 ν H 2 S 1 / 2 ) = 2 4 6 6 0 6 1 4 1 3 1 8 7 k H z − A cornerstone in the least squares adjustment of the fundamental constants (P. Mohr, B. Taylor, NIST)

  13. A dream... (Ali Javan, 1963) Extend microwave frequency counting techniques into the optical region.

  14. Garching frequency interval divider chain (1997)

  15. Optical frequency comb

  16. Optical Frequency Comb beam splitter beat note detector frequency

  17. Optical Frequency Comb Synthesizer

  18. f m = m f rep + f offset

  19. femtosecond laser frequency comb synthesizer • 100 000 ultra-stable lasers at once • revolutionary optical wave meter • frequency counter from DC to UV • clockwork for optical atomic clocks • ultra-stable microwave source • . . . • enabling tool for fundamental measurements • arbitrary optical waveform synthesizer? • . . . • source of phase-stabilized femtosecond pulses • key to attosecond physics

  20. This is a simple idea! What took so long?

  21. Stanford, 1978: 500 GHz laser frequency comb

  22. carrier-envelope phase slips group velocity phase velocity

  23. carrier-envelope phase slips

  24. carrier-envelope phase slips and offset frequency f 0 = ( ∆ ϕ / 2 π ) f r J.N. Eckstein, Ph.D. Thesis , Stanford University, 1978

  25. Kerr lens mode-locking D.E. Spencer, P.N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991)

  26. femtosecond white light continuum intensity-dependent refractive index: self-phase-modulation, self-focusing, shock wave formation, . . .

  27. Florence, Italy, February 1997 Can two white light pulses interfere? ? M. Bellini and T.W. Hänsch, Opt. Lett. 25, 1049 (2000)

  28. LENS, Florence, Italy, February 1997 camcorder electronic notebook

  29. detection of comb lines with beat signals Dr. Thomas Udem

  30. Testing the uniform spacing of the comb lines Experimental uniformity: 3 x 10- 17 Th. Udem, J. Reichert, R. Holzwarth, and T.W. Hänsch, Opt. Lett. 24, 881 (1999)

  31. 1998: first absolute frequency measurement with a laser comb first femtosecond pulses with controlled carrier-envelope phase Hydrogen 1S-2S spectrometer October 1998: HP Cs clock June 1999: 70 THz comb Paris Cs fountain clock

  32. f(1S-2S) = 2 466 061 413 187 103 (46) Hz (hyperfine centroid) 1s-2S frequency

  33. Octave-spanning frequency combs „Rainbow Fiber“ “Photonic Crystal Fiber” (Lucent Technologies, 1999) J.C. Knight, W.J. Wadsworth, P. St. Russel University of Bath, UK

  34. Self-referencing frequency comb CEO f CEO R. Holzwarth et al., Phys. Rev. Lett 85 , 2264 (2000) CEO D. Jones et al., Science 288 , 635 (2000) T.W. Hänsch, Witnessed disclosure (March 30, 1997)

  35. Single-Laser Optical Frequency Comb Synthesizer Ti:Sapphire mode-locked laser

  36. frequency combs, 2005

  37. Science, 303 , 1843 (2004)

  38. measuring the frequency of hydrogen with a laser comb

  39. 2003: Hydrogen 1S-2S spectrometer

  40. Hydrogen spectrometer, February 2003

  41. PHARAO transportable cesium fountain clock

  42. Frequency comb synthesizer

  43. M. Fischer et al., PRL 92 , 230802 (2004)

  44. Hydrogen 1S-2S frequency (F=1 to F ! =1 hyperfine component) Feb. 2003: f(1S-2S) = (2 466 061 102 474 851 34) Hz ± relative uncertainty: 1.4 x 10 -14 June 1999: f(1S-2S) = (2 466 061 102 474 870 46) Hz ± -14 relative uncertainty: 1.9 x 10 A difference of (-29 57) Hz in 44 months equals a ± relative drift of the 1S-2S transition frequency of -15 (3.2 6.3) x 10 per year ±

  45. Further evidence for a variable fine structure constant from KECK/HIRES QSO absorption spectra α / α ≤ +(6 . 4 ± 1 . 35) × 10 − 16 yr − 1 ˙ M.T. Murphy, J.K. Webb, and V.V. Flambaum, MNRAS 345 , 609 (2003)

  46. Further evidence for a variable fine structure constant from KECK/HIRES QSO absorption spectra α / α ≤ +(6 . 4 ± 1 . 35) × 10 − 16 yr − 1 ˙ M.T. Murphy, J.K. Webb, and V.V. Flambaum, MNRAS 345 , 609 (2003) Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars − 2 . 5 × 10 − 16 ≤ ˙ α / α ≤ +1 . 2 × 10 − 16 yr − 1 R. Srianand, H. Chand, P. Petitjean, and B. Aracil, PRL 92 , 121302 (2004)

  47. 10 − 14 yr − 1 � hydrogen � µ Cs /µ Cs ˙ 10 − 15 yr − 1 � � α / α ˙ Hydrogen, 1999-2003: M. Fischer et al., PRL 92 , 230802 (2004)

  48. 10 − 14 yr − 1 � mercury+ hydrogen hydrogen � µ Cs /µ Cs ˙ 10 − 15 yr − 1 � � α / α ˙ Hydrogen, 1999-2003: M. Fischer et al., PRL 92 , 230802 (2004) Mercury+, 2000-2002: S. Bize et al., PRL 90 , 150802 (2003)

  49. 10 − 14 yr − 1 � mercury+ hydrogen hydrogen � µ Cs /µ Cs ytterbium+ 1 σ area ˙ 10 − 15 yr − 1 � � α / α ˙ Hydrogen, 1999-2003: M. Fischer et al., PRL 92 , 230802 (2004) α / α = ( − 0 . 3 ± 2 . 0) × 10 − 15 yr − 1 ˙ Mercury+, 2000-2002: S. Bize et al., PRL 90 , 150802 (2003) µ Cs /µ Cs = (2 . 4 ± 6 . 8) × 10 − 15 yr − 1 ˙ Ytterbium+, 2000-2003, E. Peik et al., PRL 93 , 230802 (2004)

  50. Optical clock - some candidates Laser-cooled trapped ions Hg+, In+, Yb+, Sr+, Ca+, ... Paul trap Cold neutral atoms: H, Ca, Sr, Yb, Ag, ... Optical lattice Molecules: Atomic fountain I 2 , C 2 H 4 , ... Atom chip

  51. Accuracy of clocks optical atomic clocks

  52. Applications for (better) Atomic Clocks • Precision Spectroscopy • Time and frequency metrology • Clock synchronization over large distances • Very long baseline interferometry (VLBI) • Higher performance satellite navigation (Galileo) • Precise tracking of remote space probes • Telecommunication, network synchronization • Variability of earth " s rotation • Geodesy with millimeter precision • Pulsar periods • Test of special and general relativity • Check constancy of fundamental constants • ....

  53. curiosity-driven research

  54. Towards frequency combs and ultraprecise spectroscopy in the extreme ultraviolet

  55. Generation of high harmonics

  56. Can two high harmonics pulses interfere?

  57. Experiments at Lund Laser Center: R. Zerne et al., Phys. Rev. Lett. 79 , 1006 (1997) M. Bellini et al., Phys. Rev. Lett. 81 , 297 (1998)

  58. High harmonic generation at 112 MHz XUV out input pulses sapphire output coupler build-up cavity xenon gas jet

  59. Intra-cavity high harmonic generation injected: 22 fs pulse duration, 0.65 W average, 200 kW peak circulating: 27 fs pulse duration, 45 W average, 15 MW peak # Ch. Gohle et al., Nature 436 , 234 (2005)

  60. High harmonic generation at 112 MHz Ch. Gohle et al., Nature 436 , 234 (2005)

  61. Two-photon spectroscopy of He + 1S-2S with XUV frequency comb He + Helium ion in Paul trap 60 nm Thomas Udem Christoph Gohle Maximilian Herrmann

Recommend


More recommend