9. Discrete Transistor Amplifiers Lecture notes: Sec. 6 Sedra & Smith (6 th Ed): Sec. 5.6, 5.8, 6.6 & 6.8 Sedra & Smith (5 th Ed): Sec. 4.6, 4.8, 5.6 & 5.8 ECE 65, Winter2013, F. Najmabadi
How to add signal to the bias Bias & Signal Bias & Signal v GS = V GS + v gs v DS = V DS + v ds 1. Direct Coupling 2. Capacitive Coupling Use bias with 2 voltage supplies o For the first stage, bias such that Use a capacitor to separate bias V GS = 0 voltage from the signal. o For follow-up stages, match bias Simplified biasing problem. voltages between stages Used in discrete circuits Difficult biasing problem Only amplifies “AC” signals Used in ICs Amplifies “DC” signals! F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (2/42)
Capacitive coupling is based on the fact that capacitors appear as open circuit in bias (DC) Real Circuit Bias Circuit Signal Circuit At a high enough frequency, Z c = 1/ ( ω C ) , becomes small (effectively, capacitors become short circuit). o Mid-band parameters of an Amplifier.* At low frequencies, Z c cannot be ignored. As Z c depends on frequency, amplifier is NOT linear (for an arbitrary signal) for these low frequencies. (We do NOT want to operate the amplifier in these frequencies!) o Capacitors introduce a lower cut-off frequency for an amplifier (i.e., amplifier should be operated above this frequency). In ECE102, you will see that transistor amplifiers also have an “upper” cut-off frequency F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (3/42)
How to Solve Amplifier Circuits 1. Find Bias and Signal Circuits. 2. Bias circuit (signal = 0): o Capacitors are open circuit. o Use transistor large-signal model to find the bias point. o Use bias parameters to find small-signal parameters ( r π , g m , r o ). 3. Signal Circuit (IVS becomes short, ICS becomes open circuit): o Assume capacitors are short to find mid-band amplifier parameters. o Replace diodes and/or transistors with their small-signal model. o Solve for mid-band amplifier parameters ( A v , R i , R o ). For almost all circuits, we can use fundamental amplifier configurations, • instead of solving signal circuits. o Include impedance of capacitors to find the lower cut-off frequency of the amplifier. F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (4/42)
Emitter-degeneration bias circuits have similar signal circuits Bias with one power supply Bias with two power supplies (voltage divider) Signal Circuits The same circuit for R = 1 || We will solve this R R 2 B B B configuration F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (5/42)
By-pass capacitors Basic CE Configuration There is no R E in the basic Common-Emitter configuration. However, R E is necessary for bias in discrete circuits. Use a by-pass capacitor Real Circuit Bias Circuit: Signal Circuit: Cap is open, R E stabilizes bias Capacitor shorts R E F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (6/42)
Discrete Common-Emitter Amplifier Real Circuit Standard Bias Circuit:* Caps are open circuit CE amplifier: Input at the base Output at the collector * Bias calculations are NOT done here as we have done them before. F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (7/42)
Signal circuit of the discrete CE Amplifier Real Circuit Short caps Zero bias supplies Rearrange F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (8/42)
Discrete CE Amplifier (Gain) Signal input at the base Signal output at the collector No R E ′ = || R R R L C L Fundamental CE configuration v = − o ( || || ) g r R R m o C L v i v ′ = − o ( || ) g r R m o L v i F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (9/42)
Discrete CE Amplifier ( R i ) R = r = = | π R R r π i CE Fundamental CE configuration i = || R R r π B F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (10/42)
Discrete CE Amplifier ( R o ) 1) Set v sig = 0 Controlled current source becomes open circuit because g m v π = 0 2) Replace transistor with its SSM = 0 v π R = || R r o C o F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (11/42)
Discrete CE and CS Amplifiers v = − o ( || || ) g r R R m o C L v i = || R R r π i B = || R R r o C o → ∞ π r v = − o ( || || ) g r R R m o D L v i = R R i G = || R R r o D o v R v = × o i o + v R R v sig i sig i F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (12/42)
Discrete CS Amplifier with R S Real Circuit Bias Circuit Caps open CS amplifier with R S Input at the gate Output at the drain Signal Circuit Short caps Zero bias supplies F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (13/42)
Discrete CS Amplifier with R S (Gain) Signal input at the gate Signal output at the drain R S ! ′ = || R R R L D L Fundamental CS configuration with R S ( || ) v g R R = − o m D L + + 1 ( || ) / v g R R R r i m S D L o ′ v g R = − o m L ′ + + 1 / v g R R r i m S L o F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (14/42)
Discrete CS Amplifier with R S ( R i ) = ∞ R = = ∞ | R R / i CS RS Fundamental CS configuration with R S R = R i G F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (15/42)
Discrete CS Amplifier with R S ( R o ) 1) Set v sig = 0 2) Replace transistor with its SSM Since i g = 0 , v g = 0 and gate is grounded F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (16/42)
Discrete CS Amplifier with R S ( R o ) Attach v x , compute i x ( R o = v x /i x ) = − v i R gs y S = − + KVL: ( ) v i g v r i R x y m gs o y S = − − + ( ) v i r g r i R i R x y o m o y S y S = + + [ ( 1 ) ] v i r g r R x y o m o S v = x i + + y ( 1 ) r g r R By KCL o m o S v v v = + = + x x x KCL: i i + + x y ( 1 ) R R r g r R D D o m o S v = x i + + x || [ ( 1 ) ] R r g r R D o m o S v v [ ] ≈ = = + x x i || ( 1 ) R R r g R + + x || [ ] || [ ( 1 )] R r g r R R r g R o D o m S D o m o S D o m S F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (17/42)
Discrete CE and CS Amplifiers with R E / R S ( || ) v g R R = − o m C L + + + 1 [( || ) / ]( 1 / ) v g R R R r R r π i m E C L o E β R = + + E || R R r R π + i B E 1 [( || ) / ] R R r C L o β R = + E || 1 R R r + + o C o || r R R R π E B sig ( || ) v g R R = − o m D L + + 1 ( || ) / v g R R R r i m S D L o = R R i G [ ] = + || ( 1 ) R R r g R o D o m S v R v = × o i o + v R R v sig i sig i F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (18/42)
Discrete CB Amplifier Real Circuit Bias Circuit Caps open Signal Circuit CB amplifier Short caps Input at the gate Zero bias supplies Output at the drain Capacitor C B is necessary. Otherwise, Amp gain drops substantially. F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (19/42)
Discrete CB Amplifier (Gain) Signal input at the emitter Signal output at the collector ′ = || R R R L C L Fundamental CB Configuration v v = + ′ = + o ( || || ) g r R R o ( || ) g r R m o C L m o L v v i i F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (20/42)
Discrete CB Amplifier ( R i ) ′ + r R = || o L R r ′ + π + r R 1 g r = = o L | || m o R R r π + Fundamental i CB 1 g r m o CB configuration + ( || ) r R R = || || o C L R R r π + i E 1 g r m o F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (21/42)
Discrete CB Amplifier ( R o ) 1) Set v sig = 0 2) Replace transistor with its SSM F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (22/42)
Discrete CB Amplifier ( R o ) Attach v x , compute i x ( R o = v x /i x ) By KCL = || || R R R r π 1 E sig = − v i R π y 1 = − + KVL: ( ) v i g v r i R π 1 x y m o y = − − + ( ) v i r g r i R i R x y o m o y 1 y 1 = + + [ ( 1 ) ] v i r g r R 1 x y o m o v = x i + + y ( 1 ) r g r R 1 o m o v v v KCL: = + = + x x x i i + + x y { } ( 1 ) R R r g r R C C o m o 1 = + || [ 1 ( || || )] R R r g r R R π v o C o m E sig = x i + + x || [ ( 1 ) ] R r g r R 1 C o m o v v ≈ = x x i + + x || [ ] || [ ( 1 )] R r g r R R r g R 1 1 C o m o C o m F. Najmabadi, ECE65, Winter 2013, Discrete Amplifiers (23/42)
Recommend
More recommend