3dgenomics
play

3DGenomics Marc A. Marti-Renom Structural Genomics Group CNAG-CRG - PowerPoint PPT Presentation

3DGenomics Marc A. Marti-Renom Structural Genomics Group CNAG-CRG Structural Genomics Group http://www.marciuslab.org Integrative Modeling Platform http://www.integrativemodeling.org Experiments Computations Physics Evolution f()


  1. 3DGenomics Marc A. Marti-Renom Structural Genomics Group CNAG-CRG

  2. Structural Genomics Group http://www.marciuslab.org

  3. Integrative Modeling Platform http://www.integrativemodeling.org Experiments Computations Physics Evolution f(·) From: Russel, D. et al. PLOS Biology 10, e1001244 (2012).

  4. Data Integration

  5. Data Integration 6

  6. Data Integration

  7. Complex genome organization

  8. Resolution Gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011) Knowledge IDM INM DNA length 10 10 10 10 nt Volume 10 10 10 10 10 μ m Time 10 10 10 10 10 10 10 10 s Resolution 10 10 10 μ

  9. Level I: Radial genome organization Takizawa, T., Meaburn, K. J. & Misteli, T. The meaning of gene positioning. Cell 135, 9–13 (2008). Chromosome size Gene density Expression β β

  10. Level II: Euchromatin vs heterochromatin Electron microscopy

  11. Level III: Lamina-genome interactions to neural/glial The poising’’ “Unlocking” Neuronal ), AC gene Stemcell gene genes in Cell-cycle promoters gene nuclear membrane nuclear lamina here internal chromatin (mostly active) lamina-associated domains and (repressed) architec- Genes over- mRNA large Adapted from Molecular Cell 38, 603-613, 2010 step

  12. Level IV: Higher-order organization Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14, 390–403 (2013). Compartments A compartments 20 Mb B compartments Interaction preference TADs 2 Mb

  13. Level V: Chromatin loops Gene enhancers Gene Gene activity

  14. Level V: Loop-extrusion as a driving force Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., & Mirny, L. A. (2015). Formation of Chromosomal Domains by Loop Extrusion. bioRxiv.

  15. Level VI: Nucleosome Chromosome Chromatin fibre Nucleosome Adapted from Richard E. Ballermann, 2012

  16. Complex genome organization Cavalli, G. & Misteli, T. Functional implications of genome topology. Nat Struct Mol Biol 20, 290–299 (2013). Lamina Transcription hub Centromere cluster Chromosome territories Active Non- Nuclear coding pore Inactive Chromatin Superdomains DNA domains Marina Corral Nucleus

  17. Modeling Genomes Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011)

  18. Experiments Computation

  19. Biomolecular structure determination 2D-NOESY data Chromosome structure determination 5C data

  20. Chromosome Conformation Capture CROSSLINK Protein Protein CUTTING Endonuclease digestion Sonication Biotin dCTP fill in Immunoprecipitation Immunoprecipitation LIGATION biotinilated linkers B B B B B B REVERSE B B CROSSLINKS B B B B DETECTION Multiplexed Digestion with Sonicate Mmel digestion amplification four base cutter Pull down Ligation B B PCR with PCR with PCR with Pull down speci fj c primers universal primers speci fj c primers Inverse PCR B B Contact B B B library B COMPUTATIONAL ANALYSIS Chromatin-associated factors Gene 3C 5C 4C Hi-C ChIP-loop ChIA-PET All against all 4,18 All against all 10 Principle Contacts between All contacts with a Contacts between All contacts associated Hakim, O., & Misteli, T. (2012). SnapShot: Chromosome Confirmation Capture. Cell, 148(5), 1068–1068.e2.

  21. Modeling 3D Genomes Baù, D. & Marti-Renom, M. A. Methods 58, 300–306 (2012). P1 P2 P1 P2 P1 P2

  22. Example of 3D Genome / IMGR

More recommend