crystallization of compound plastic optical
play

Crystallization of Compound Plastic Optical and Francisco J. Blanco - PowerPoint PPT Presentation

ICTEA 2010, Marrakesh, Morocco J.I. Ramos Crystallization of Compound Plastic Optical and Francisco J. Blanco Fibers Rodr guez Introduction Mathematical J.I. Ramos and Francisco J. BlancoRodr guez model of melt spinning


  1. ICTEA 2010, Marrakesh, Morocco J.I. Ramos Crystallization of Compound Plastic Optical and Francisco J. Blanco– Fibers Rodr´ ıguez Introduction Mathematical J.I. Ramos and Francisco J. Blanco–Rodr´ ıguez model of melt spinning Numerical Escuela de Ingenier´ ıas method Universidad de M´ alaga Simulation results of melt spinning fibers Fifth International Conference on Thermal Engineering: Discussion Theory and Applications May 10–14, 2010, Marrakesh, Morocco 1 / 17

  2. Index ICTEA 2010, Marrakesh, Morocco J.I. Ramos 1 Introduction and Francisco J. Blanco– Rodr´ ıguez 2 Mathematical model of melt spinning Introduction Mathematical model of melt 3 Numerical method spinning Numerical method 4 Simulation results of melt spinning fibers Simulation results of melt spinning fibers Discussion 5 Discussion 2 / 17

  3. Introduction ICTEA 2010, Polymer Optical Fibers (POF) are manufactured by MELT Marrakesh, Morocco SPINNING processes. J.I. Ramos Necessary: modelling of the drawing process for both and Francisco J. Blanco– hollow and solid compound optical fibers. Rodr´ ıguez Previous studies are based on one–dimensional models. Introduction NO INFORMATION ABOUT RADIAL VARIATIONS. Mathematical model of melt Use of a hybrid model for melt spinning phenomena. spinning Applications Numerical method 1 Telecommunications: Data transmission. 2 Chemical industry: Filtration and separation processes. Simulation results of melt 3 Biomedical industry. spinning fibers 4 Textile industry. Discussion 3 / 17

  4. Melt spinning ICTEA 2010, Marrakesh, Morocco Involves the extrusion and drawing of a polymer cylinder. Four J.I. Ramos zones. and Francisco J. Blanco– Rodr´ ıguez 1 Shear Flow Region. Introduction Mathematical 2 Flow model of melt spinning Rearrangement Numerical Region. method 3 Melt Drawing Simulation results of melt Zone. spinning fibers Discussion 4 Solidification region . 4 / 17

  5. Melt spinning ICTEA 2010, Involves the extrusion and drawing of a polymer cylinder. Four Marrakesh, Morocco zones. J.I. Ramos and Francisco J. Blanco– Rodr´ ıguez 1 Shear Flow Introduction Region. Mathematical 2 Flow model of melt spinning Rearrangement Numerical Region. method Simulation 3 Melt Drawing results of melt spinning fibers Zone. Discussion 4 Solidification region . 4 / 17

  6. Melt spinning ICTEA 2010, Involves the extrusion and drawing of a polymer cylinder. Four Marrakesh, Morocco zones. J.I. Ramos and Francisco J. Blanco– Rodr´ ıguez 1 Shear Flow Introduction Region. Mathematical 2 Flow model of melt spinning Rearrangement Numerical Region. method Simulation 3 Melt Drawing results of melt spinning fibers Zone. Discussion 4 Solidification region . 4 / 17

  7. Melt spinning ICTEA 2010, Involves the extrusion and drawing of a polymer cylinder. Four Marrakesh, Morocco zones. J.I. Ramos and Francisco J. Blanco– Rodr´ ıguez 1 Shear Flow Introduction Region. Mathematical 2 Flow model of melt spinning Rearrangement Numerical Region. method Simulation 3 Melt Drawing results of melt spinning fibers Zone. Discussion 4 Solidification region . 4 / 17

  8. Melt spinning ICTEA 2010, Involves the extrusion and drawing of a polymer cylinder. Four Marrakesh, Morocco zones. J.I. Ramos and Francisco J. Blanco– Rodr´ ıguez 1 Shear Flow Introduction Region. Mathematical 2 Flow model of melt spinning Rearrangement Numerical Region. method Simulation 3 Melt Drawing results of melt spinning fibers Zone. Discussion 4 Solidification region . 4 / 17

  9. Melt spinning ICTEA 2010, Involves the extrusion and drawing of a polymer cylinder. Four Marrakesh, Morocco zones. J.I. Ramos and Francisco J. Blanco– Rodr´ ıguez 1 Shear Flow Introduction Region. Mathematical 2 Flow model of melt spinning Rearrangement Numerical Region. method Simulation 3 Melt Drawing results of melt spinning fibers Zone. Discussion 4 Solidification region . 4 / 17

  10. Problem formulation (I) ICTEA 2010, Mass conservation equation Marrakesh, Morocco ∇ · v i = 0 i = 1 , 2 , J.I. Ramos and Francisco where v = u ( r, x ) e x + v ( r, x ) e r J. Blanco– Rodr´ ıguez Linear Momentum conservation equation Introduction � ∂ v i � = −∇ p + ∇· τ i + ρ i · f m ρ i ∂t + v i · ∇ v i i = 1 , 2 , Mathematical model of melt where f m = g e x spinning Energy conservation equation Numerical method � ∂T i � ρ i C i ∂t + v i · ∇ T i = −∇ · q i , i = 1 , 2 , Simulation results of melt spinning fibers Constitutive equations Discussion Newtonian rheology � ∇ v i + ∇ v T � τ i = 2 µ eff,i D i = µ eff,i , i Fourier’s law q i = − k i ∇ T i , 5 / 17

  11. Problem formulation (II) ICTEA 2010, Molecular orientation: Doi–Edwards equation Marrakesh, Morocco ∂S ∂t + v · ∇ S = − φ J.I. Ramos λ F ( S ) + G ( ∇ v , S ) , and Francisco J. Blanco– F ( S ) = S (1 − N/ 3 (1 − S ) (2 S + 1)) Rodr´ ıguez G ( ∇ v , S ) = (1 − S ) (2 S + 1) ∂u ∂x. Introduction Mathematical model of melt Crystallization: Avrami–Kolmogorov kinetics spinning ∂θ i Numerical ∂t + v · ∇ θ i = k Ai ( S i ) ( θ ∞ i − θ i ) , i = 1 , 2 , method Simulation results of melt where spinning fibers ` a 2 i S 2 ´ k Ai ( S i ) = k Ai (0) exp , i = 1 , 2 . Discussion i 6 / 17

  12. Problem formulation (III) ICTEA 2010, Marrakesh, Kinematic, dynamic and Morocco thermal boundary conditions J.I. Ramos and Francisco are required: J. Blanco– Rodr´ ıguez Symmetry conditions ( r = 0 ) Introduction Die exit conditions ( x = 0 ) Mathematical model of melt Take–up point conditions spinning ( x = L ) Numerical method Conditions on free surfaces Simulation results of melt of compound fiber spinning fibers ( r = R 1 ( x ) and Discussion r = R 2 ( x ) ) 7 / 17

  13. Non–dimensionalize ICTEA 2010, Non–dimensional variables Marrakesh, Morocco t r = r x = x ǫ = R 0 ˆ t = ˆ ˆ ⇒ J.I. Ramos L/u 0 R 0 L L and Francisco J. Blanco– u = u v p T = T Rodr´ ıguez ˆ ˆ ˆ v = p = ˆ u 0 ( u 0 ǫ ) ( µ 0 u 0 /L ) T 0 Introduction ρ = ρ C = C µ = µ k = k ˆ ˆ ˆ ˆ Mathematical ρ 0 C 0 µ 0 k 0 model of melt spinning Non–dimensional numbers Numerical method Fr = u 2 Re = ρ 0 u 0 R 0 Ca = µ 0 u 0 0 , gR 0 , σ 2 , Simulation µ 0 results of melt spinning fibers Pe = ρ 0 C 0 Bi = hR 0 u 0 R 0 , Discussion k 0 k 0 8 / 17

  14. Asymptotic analysis: 1 D model ICTEA 2010, Marrakesh, Morocco Perturbation method using the fiber slenderness ( ǫ << 1) J.I. Ramos and Francisco J. Blanco– Ψ i = Ψ i, 0 + ǫ 2 Ψ i, 2 + O � ǫ 4 � , Rodr´ ıguez Introduction for the variables ˆ p i and ˆ R i , ˆ u i , ˆ v i , ˆ T i where i = 1 , 2 . Mathematical model of melt Steady–state flow regime considered spinning Numerical ¯ ¯ F C method Re = ǫ ¯ R, Fr = ǫ , Ca = ǫ , Simulation results of melt Bi = ǫ 2 ¯ spinning fibers Pe = ǫ ¯ P, B Discussion where ¯ Υ = O (1) . 9 / 17

  15. One–dimensional equations of the 1 + 1 / 2 D model ICTEA 2010, Asymptotic one–dimensional mass conservation equation Marrakesh, Morocco d “ ” A i ˆ U = 0 , i = 1 , 2 , d ˆ x J.I. Ramos and Francisco J. Blanco– Rodr´ ıguez ˆ ˆ 2 − ˆ R 2 R 2 R 2 1 1 A 1 = 2 , A 2 = , 2 Introduction Asymptotic one–dimensional linear momentum equation Mathematical model of melt ! U d ˆ µ eff, 2 > A 2 ) d ˆ spinning U d U ¯ ρ 2 A 2 ) ˆ R (ˆ ρ 1 A 1 + ˆ = 3 ( < ˆ µ eff, 1 > A 1 + < ˆ d ˆ x d ˆ x d ˆ x Numerical method d ˆ d ˆ ! 1 R 2 x + σ 1 R 1 + Simulation 2 ¯ d ˆ σ 2 d ˆ x C results of melt ¯ spinning fibers R + (ˆ ρ 1 A 1 + ˆ ρ 2 A 2 ) ¯ F Discussion Effective dynamic viscosity „ θ i « n i « „ +2 “ ” µ eff,i = ˆ ˆ 1 − ˆ 3 α i λ i S 2 ˆ G i exp E i T i + β i i , i = 1 , 2 . θ ∞ ,i 10 / 17

  16. Mapping: 2 D model n o [0 , ˆ (ˆ r, ˆ x ) �→ ( ξ, η ) maps Ω ˆ x = R 2 (ˆ x )] × [0 , 1] into a rectangular ICTEA 2010, r ˆ Marrakesh, domain Ω ξη = { [0 , 1] × [0 , 1] } Morocco J.I. Ramos and Francisco J. Blanco– Rodr´ ıguez Introduction Mathematical model of melt spinning Numerical method Simulation results of melt spinning fibers Discussion 11 / 17

  17. Two–dimensional equations of the 1 + 1 / 2 D model ICTEA 2010, Two–dimensional energy equation Marrakesh, Morocco J.I. Ramos � � ∂ ˆ ξ ∂ ˆ and Francisco T i 1 1 1 ∂ T i ∂η = i = 1 , 2 , J. Blanco– ¯ 2 Q P i ξ ∂ξ ∂ξ Rodr´ ıguez Introduction Two–dimensional molecular orientation parameter equation Mathematical model of melt spinning U ∂S i − φ i ˆ Numerical = S i (1 − N i / 3 (1 − S i ) (2 S i + 1)) ∂η λ i method (1 − S i ) (2 S i + 1) d ˆ Simulation U + dη , i = 1 , 2 . results of melt spinning fibers Two-dimensional degree of crystallinity equation Discussion U ∂θ i ˆ a 2 i S 2 � � ∂η = k Ai (0) exp ( θ ∞ ,i − θ i ) , i = 1 , 2 , i 12 / 17

  18. Influence of Biot number on cooling process ICTEA 2010, Marrakesh, Morocco J.I. Ramos and Francisco J. Blanco– Rodr´ ıguez Introduction Mathematical model of melt spinning Numerical method Simulation results of melt spinning fibers Discussion ¯ ¯ B = 0 , 5 B = 5 , 0 13 / 17

Recommend


More recommend