2d materials with strong spin orbit coupling topological
play

2D Materials with Strong Spin-orbit Coupling: Topological and - PowerPoint PPT Presentation

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole Polytechnique F ed erale de


  1. 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole Polytechnique F´ ed´ erale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland pulkin@caltech.edu November 1, 2017 Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 1 / 32

  2. Topological insulators 1 Spin-orbit coupling Two-dimensional transition metal dichalcogenides 2 Quantum spin Hall phase in 2D TMDs Edges and topological edge modes Structural phase boundaries Line defects and transport of electronic spin Summary 3 Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 1 / 32

  3. Topological insulators

  4. Timeline 1975-1981 (Nobel prize 1985) Quantum Hall effect 2005 Quantum spin Hall (QSH) effect, topological order 2006 First realization in HgTe quantum wells Materials? Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 2 / 32

  5. The QSH effect in 2D Kane-Mele model �� � � � t NN · c † c + i ν t NNN · c † c H = spin NN NNN Tight-binding model of graphene NNN E E k k Spin-orbit coupling Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 3 / 32

  6. Spin-orbit coupling Increases with atomic number Z : Z 2 ∆ SO ∼ n 3 l ( l + 1) Valence shells in carbon: ∆ SO < meV Too small for spectroscopic and transport measurements Compare: HgTe quatnum wells: 10-100 meV (Bernevig et al. Science 314 , 1757 (2006)) Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 4 / 32

  7. Are there any 2D materials with a large spin-orbit coupling?

  8. Two-dimensional transition metal dichalcogenides TMD = MX 2 , M = { Mo, W } , X = { S, Se, Te } 2H phase = = = , Γ K K' stable phase (except for WTe 2 ), semiconductor in a hexagonal lattice; large spin-orbit splitting in the valence band (150 meV in MoS 2 , up to 460 meV in WSe 2 ): spin-polarized states; spin-valley coupling Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 5 / 32

  9. 2D TMDs M. Chhowalla, et al., Nat Chem 5 , 263275 (2013) Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 6 / 32

  10. Applications Transistors LEDs Radisavljevic et al., Nat Nano 6 no. 3 147-150 (2011) Solar cells Amani et al., Science 350 no. 6264 1065-1068 Bernardi el al., Nano Lett. 13 no. 8 3664-3670 (2015) (2013) Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 7 / 32

  11. Is it possible to drive 2D TMDs into the QSH phase ?

  12. QSH effect in 2D TMDs 1T’ phase same material in a metastable structure hexagonal symmetry breaking → rectangular unit cell formation of dimerization chains Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 8 / 32

  13. Electronic properties of the 1T’ structural phase 0.3 Energy (eV) MoS 2 MoSe 2 MoTe 2 0.0 48 meV 35 meV 0.3 0.3 Energy (eV) WS 2 WSe 2 WTe 2 0.0 29 meV 0.3 0.5 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.5 k y ( 2 k y ( 2 k y ( 2 b ) b ) b ) spin-degenerate bands (inversion + time reversal symmetries) semimetals or semiconductors with a 10 meV-order band gap topological band inversion Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 9 / 32

  14. QSH phase in 1T’ 2D TMDs band inversion at Γ → quantum spin Hall (QSH) topological phase Qian et al., Science 346 , 1344-1347 (2014) Choe et al., Phys. Rev. B 93 , 125109 (2016) Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 10 / 32

  15. Is the QSH phase in 1T’ TMDs robust against lattice deformations?

  16. Electronic structure in equilibrium At the density functional theory level (GGA): MoS 2 , MoSe 2 , WSe 2 have a band gap ; WS 2 , MoSe 2 , WTe 2 are semimetals ; k x k x k x WS 2 MoTe 2 WTe 2 k y k y k y Hole, electron pockets in semimetallic 1T’ TMDs Close to semiconducting phase transition phase? Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 11 / 32

  17. Band gap under strain in 1T’ 2D TMDs a b 120 3.3 QSH 92 meV 3.4 semiconductor semiconductor 105 3.2 b (Å) PBE 57 meV PBE 3.3 90 3.1 3.2 MoSe 2 semimetal MoS 2 semimetal 75 E g , meV 5.7 5.8 5.9 6.0 6.1 6.2 5.5 5.6 5.7 5.8 5.9 6.0 60 c d 45 3.3 120 meV 3.4 semiconductor trivial semiconductor 30 b (Å) QSH PBE 3.2 63 meV PBE 3.3 15 3.1 3.2 WS 2 WSe 2 semimetal semimetal 0 5.5 5.6 5.7 5.8 5.9 6.0 5.7 5.8 5.9 6.0 6.1 6.2 a (Å) a (Å) Pulkin & Yazyev Journal of Electron Spectroscopy and Related Phenomena 219 72-76 (2017) Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 12 / 32

  18. Conclusions 1T’-TMDs posess a topological band inversion at the Gamma point; MoS 2 , MoSe 2 , WSe 2 also have a positive band gap → topological insulators ; The size of the band gap is sensitive to lattice deformations; Both semiconductor-to-semimetal and topological phase transitions can be induced by strain Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 13 / 32

  19. How do topological edge states in 1T’ TMDs look like?

  20. Recall: Kane-Mele model Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 14 / 32

  21. Edges in 1T’ TMDs The “zigzag” edge 1,2 = neutral m1,m2 = metal-rich c1,c2 = chalcogen-rich Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 15 / 32

  22. Edges in 1T’ TMDs m2 is always preferred for metal-rich conditions; 2 is usually preferred for chemically balanced conditions; c1 , c2 are equally preferred for calcogen-rich conditions Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 15 / 32

  23. Electronic properties of edges in 1T’ TMDs Energetically preferred terminations are considered; Method: DFT + Green’s function (NEGF) MoS 2 MoSe 2 MoTe 2 WS 2 WSe 2 WTe 2 1 Balanced Energy (eV) 0 1 2 2 2 2 2 -1 1 Energy (eV) M-rich 0 m2 m2 m2 m2 m2 m2 -1 1 Energy (eV) C-rich 0 c2 c1 c1 c2 c2 c1 -1 0 1 0 1 0 1 0 1 0 1 0 1 k y ( /b) k y ( /b) k y ( /b) k y ( /b) k y ( /b) k y ( /b) Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 16 / 32

  24. Is topological protection of the ballistic transport regime possible?

  25. Topologically protected transport Unprotected Protected topological protection � = protection against back-scattering 0 A single spin channel is shown Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 17 / 32

  26. Ballistic transport along 1T’- WSe 2 edges 0.1 Energy (eV) 0.0 WSe 2 (2) -0.1 0.1 Energy (eV) 0.0 WSe 2 (c2) -0.1 Y Y non-uniform dispersion of edge modes; protected transport is possible in a narrow energy region and only at specific edges of 1T’- WSe 2 Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 18 / 32

  27. What is available experimentally?

  28. Experimental observations of the 1T’ phase in 2D WSe 2 Defect-free bulk ✓ Images are courtesy of Miguel M. Ugeda, nanoGUNE , San Sebastian, Spain Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 19 / 32

  29. Experimental observations of the 1T’ phase in 2D WSe 2 Defect-free bulk ✓ ? Regular periodic edges Images are courtesy of Miguel M. Ugeda, nanoGUNE , San Sebastian, Spain Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 19 / 32

  30. Experimental observations of the 1T’ phase in 2D WSe 2 Defect-free bulk ✓ ? Regular periodic edges ! Structural phase boundaries Images are courtesy of Miguel M. Ugeda, nanoGUNE , San Sebastian, Spain Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 19 / 32

  31. Structural phase boundary is topologically non-trivial

  32. 1T’- WSe 2 interface states 1T' 2H Images are courtesy of Miguel M. Ugeda, nanoGUNE , San Sebastian, Spain Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 20 / 32

  33. Can theory confirm the presence of interface modes? Are these modes “topological”?

  34. Atomic structures of phase boundaries in WSe 2 Construct model: choose the zigzag edge of the 2H phase (2x); choose the zigzag edge of the 1T’ phase (4x, half discarded); concatenate Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 21 / 32

  35. Electronic structure of phase boundaries in WSe 2 Method: DFT + NEGF 1 1 2 3 4 E (eV) 0 -1 1 5 6 7 8 E (eV) 0 -1 Y K K' Y Y K K' Y Y K K' Y Y K K' Y 1 , 3 and 6 , 8 are similar Multiple spectroscopic signatures No topological protection of transport Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 22 / 32

  36. Conclusions Edge modes of real topological materials require ab-initio description; DFT+NEGF calculations reveal multiple spin-polarized modes spanning a large energy region in 1T’-TMDs; The dispersion of edge modes is consistent with the QSH phase; Specific 1T’- WSe 2 edges are suitable for ballistic charge carrier transport protected against back-scattering; Regular topological phase boundary is accessible experimentally! Artem Pulkin (Caltech, EPFL) Transport in 2D materials November 1, 2017 23 / 32

  37. Topological edge states carry spin-polarized current in a non-magnetic media → applications for spintronics and quantum computing. Other examples in 2D?

Recommend


More recommend