Lesson 3.2: Law of Cosines 2 2 2 a b c 2 bc cos A 2 2 2 b a c 2 ac cos B 2 2 2 c a b 2 ab cos C
Law of Cosines: Alternative Form 2 2 2 b c a cos A 2 bc 2 2 2 a c b cos B 2 ac 2 2 2 a b c cos C 2 ab
Ex 1: Find all three angles of the triangle. m A = 22 ° B m B = 117 ° c = 14 a = 8 m C = 41 ° A C b = 19 2 2 2 a b c 2 2 2 2 2 2 b c a a c b cos C cos A cos B 2 ab 2 bc 2 ac
Ex 2: Find the remaining angles and side of the triangle. 41 ° m B = C a m C = 24 ° b = 15 a = 21 115 ° B A c = 10 2 2 2 a c b 2 2 2 a b c 2 bc cos A cos B 2 ac 2 2 2 b a c 2 ac cos B 2 2 2 a b c cos C 2 2 2 c a b 2 ab cos C 2 ab
Heron’s Area Formula • Given any triangle with sides of lengths a, b, and c, the area of the triangle is: ( )( )( ) Area s s a s b s c where s ( a b c ) / 2
Ex 3: Find the area of a triangular region having sides of lengths a = 43m, b = 53m, and c = 72m. b gb gb g b gb gb g A A s s a s b s c 84 84 43 84 53 84 72 b gb gb g s ( 43 53 72 ) / 2 84 41 31 12 168 2 / 1281168 , , 84 11319 2 . m Homework: p.291 #1-15 & 23-27 (all odds)
Recommend
More recommend