wiam 2016
play

WIAM 2016 Applications Approaches Test Case Variational Form - PowerPoint PPT Presentation

WIAM 2016 Jorge De Anda Salazar Introduction WIAM 2016 Applications Approaches Test Case Variational Form Jorge De Anda Salazar Postulates Constitutive model Kinematics Incremental VF Ecole Centrale de Nantes, France (ECN)


  1. WIAM 2016 Jorge De Anda Salazar Introduction WIAM 2016 Applications Approaches Test Case Variational Form Jorge De Anda Salazar Postulates Constitutive model Kinematics ´ Incremental VF Ecole Centrale de Nantes, France (ECN) Numerical Im- Technische Universit¨ at M¨ unchen, Germany (TUM) plementation Monolithic Staggered Sep 1st, 2016 Comparison of results Conclusion Remarks Future Work 1/20

  2. WIAM 2016 Jorge De Anda Salazar Introduction Incremental VF 1 Introduction Applications Approaches 3 Numerical Implementation Applications Test Case Monolithic Variational Approaches Form Staggered Test Case Postulates Constitutive model Comparison of results 2 Variational Form Kinematics Incremental VF Postulates 4 Conclusion Numerical Im- Constitutive model Remarks plementation Monolithic Kinematics Future Work Staggered Comparison of results Conclusion Remarks Future Work 2/20

  3. Research topic WIAM 2016 Jorge De Anda Salazar Introduction Development of algorithmic strategies for numerical Applications Approaches simulation of coupled mechanical-diffusion problems Test Case Variational Form Applications Postulates Constitutive Reactive flows model Kinematics in solids Incremental VF Numerical Im- Tissue plementation Monolithic diagnosis and Staggered Comparison of reconstruction results Conclusion Remarks Future Work 3/20

  4. Research topic WIAM 2016 Jorge De Anda Salazar Development of algorithmic strategies for numerical simulation of coupled mechanical-diffusion problems Introduction Applications Approaches Test Case Variational Applications Form Postulates Reactive flows Constitutive model Kinematics in solids Incremental VF Numerical Im- Tissue plementation diagnosis and Monolithic Staggered reconstruction Comparison of results 1 Conclusion Remarks Future Work 1 By - Mpt-matthew - Own work, CC BY 3.0, https://en.wikipedia.org/wiki/File:Expanded lithium-ion polymer battery from an Apple iPhone 3GS.jpg 3/20

  5. Research topic WIAM 2016 Jorge De Anda Salazar Development of algorithmic strategies for numerical simulation of coupled mechanical-diffusion problems Introduction Applications Approaches Test Case Variational Applications Form Postulates Reactive flows Constitutive model Kinematics in solids Incremental VF Numerical Im- Tissue plementation diagnosis and Monolithic Staggered reconstruction Comparison of results 1 Conclusion Remarks Future Work 1 By User:Paulnasca - Own work, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=7128816 3/20

  6. Research topic WIAM 2016 Jorge De Anda Salazar Development of algorithmic strategies for numerical simulation of coupled mechanical-diffusion problems Introduction Applications Approaches Test Case Variational Applications Form Postulates Reactive flows Constitutive model Kinematics in solids Incremental VF Numerical Im- Tissue plementation diagnosis and Monolithic Staggered reconstruction Comparison of results 1 Conclusion Remarks Future Work 1 By - Carl Fredrik (CFCF)- Own work, CC BY 3.0, https://commons.wikimedia.org/wiki/File:716 Intervertebral Disk.jpg 3/20

  7. Transient Chemical diffusion WIAM 2016 Jorge De Anda Salazar Introduction Applications Approaches Variables Test Case Variational Form � Postulates c : concentration [ mol / m 3 ] j : molar flux [ mol / m 2 s ] Constitutive model D : diffusivity [ m 2 / s ] µ : chemical potential [ J / mol ] Kinematics Incremental VF Numerical Im- plementation Monolithic Staggered Comparison of results Conclusion Remarks Future Work 4/20

  8. Transient Chemical diffusion WIAM 2016 Jorge De Anda Salazar Introduction Applications Approaches Test Case 2 3 Variational Form Postulates Variables Constitutive model Kinematics Incremental VF � c : concentration [ mol / m 3 ] j : molar flux [ mol / m 2 s ] Numerical Im- D : diffusivity [ m 2 / s ] µ : chemical potential [ J / mol ] plementation Monolithic Staggered Comparison of results Conclusion Remarks Future Work 2By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=29452222 3 Georg Job, Physical chemistry from a different angle 4/20

  9. Different approaches WIAM 2016 Jorge De Anda Salazar Introduction Applications Approaches Test Case • Strong Form Variational Form • Weak form Postulates Constitutive • Variational form model Kinematics Incremental VF Numerical Im- plementation Monolithic Staggered Comparison of results Conclusion Remarks Future Work 5/20

  10. Different approaches WIAM 2016 Jorge De Anda Salazar Introduction Applications • Strong Form (Fick’s laws) Approaches Test Case Variational Form 1st law: ∂ c ∂ t = −∇ · � 2nd law: � Postulates j = − D ∇ c j Constitutive model Kinematics Incremental VF • Weak form Numerical Im- • Variational form plementation Monolithic Staggered Comparison of results Conclusion Remarks Future Work 5/20

  11. Different approaches WIAM 2016 Jorge De Anda Salazar • Strong Form (Fick’s laws) Introduction Applications Approaches 1st law: ∂ c Test Case ∂ t = −∇ · � 2nd law: � j = − D ∇ c j Variational Form Postulates • Weak form Constitutive model Kinematics Incremental VF Numerical Im- � � ∂ c � plementation ∂ t δ c + D ∇ c · ∇ δ c dx = 0 Monolithic Staggered Ω Comparison of results • Variational form Conclusion Remarks Future Work 5/20

  12. Different approaches WIAM 2016 • Strong Form (Fick’s laws) Jorge De Anda Salazar 1st law: ∂ c Introduction ∂ t = −∇ · � 2nd law: � j = − D ∇ c j Applications Approaches Test Case • Weak form Variational Form Postulates Constitutive model � � ∂ c � Kinematics ∂ t δ c + D ∇ c · ∇ δ c dx = 0 Incremental VF Ω Numerical Im- plementation Monolithic • Variational form Staggered Comparison of results Conclusion Remarks { c } = arg inf c I ( c ) Future Work 5/20

  13. Different approaches • Strong Form (Fick’s laws) WIAM 2016 Jorge De Anda Salazar 1st law: ∂ c ∂ t = −∇ · � 2nd law: � j j = − D ∇ c Introduction Applications Approaches Test Case • Weak form Variational Form Postulates � � ∂ c � Constitutive model ∂ t δ c + D ∇ c · ∇ δ c dx = 0 Kinematics Incremental VF Ω Numerical Im- plementation • Variational form Monolithic Staggered Comparison of results Conclusion { c } = arg inf c I ( c ) Remarks Future Work Variational Form ⇐ ⇒ Weak Form ⇐ ⇒ Strong Form 5/20

  14. Different approaches • Strong Form (Fick’s laws) WIAM 2016 Jorge De Anda Salazar 1st law: ∂ c ∂ t = −∇ · � 2nd law: � j = − D ∇ c j Introduction Applications Approaches Test Case • Weak form Variational Form Postulates � ∂ c � � Constitutive model ∂ t δ c + D ∇ c · ∇ δ c dx = 0 Kinematics Incremental VF Ω Numerical Im- plementation • Variational form Monolithic Staggered Comparison of results Conclusion { c , µ } = arg inf c sup µ I ( c , µ ) Remarks Future Work Variational Form ⇐ ⇒ Weak Form ⇐ ⇒ Strong Form 5/20

  15. Different approaches • Strong Form (Fick’s laws) WIAM 2016 Jorge De Anda Salazar 1st law: ∂ c ∂ t = −∇ · � 2nd law: � j j = − D ∇ c Introduction Applications Approaches • Weak form Test Case Variational Form � ∂ c � � Postulates ∂ t δ c + D ∇ c · ∇ δ c dx = 0 Constitutive model Ω Kinematics Incremental VF • Variational form Numerical Im- plementation Monolithic Staggered { c , µ } = arg inf c sup µ I ( c , µ ) Comparison of results Conclusion Chemistry Thermodynamics Mechanics Electricity Remarks Future Work c S ǫ q µ σ T V 5/20

  16. Test Case: Initial discontinuous concentration WIAM 2016 Boundary conditions Initial conditions Jorge De Anda Salazar  c = c ext ∀ x = L , t > 0  Introduction IC : c ( x , t = 0) = c 0 BC : ∂ c Applications Approaches ∂ x = 0 ∀ x = 0 , t > 0  c 0 � = c ext Test Case Variational Exact Solution Form Postulates # 10 5 Chemical Potential Concentration -1.74 12000 Constitutive 10000 -1.76 model 3 ] 8000 Kinematics -1.78 c [mol/m 6000 Incremental VF -1.8 7 4000 Numerical Im- -1.82 2000 plementation -1.84 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 # 10 ! 3 # 10 ! 3 Monolithic + [meters] + [meters] Staggered # 10 9 Internal Energy # 10 5 Phase Space 0 -1.75 Comparison of results -0.5 e [J/m ] Conclusion -1 7 -1.8 Remarks -1.5 Future Work -2 -1.85 0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2 # 10 ! 3 # 10 4 + [meters] c 6/20

Recommend


More recommend