why don t we move slower
play

Why dont we move slower? On the cost of time in the neural control - PowerPoint PPT Presentation

Why dont we move slower? On the cost of time in the neural control of movement eric Jean 1 Bastien Berret 2 Fr ed 1 ENSTA ParisTech (and Team GECO, INRIA Saclay) 2 University Paris Sud IHP, November 26, 2014 F. Jean (ENSTA) Why dont


  1. Why don’t we move slower? On the cost of time in the neural control of movement eric Jean 1 Bastien Berret 2 Fr´ ed´ 1 ENSTA ParisTech (and Team GECO, INRIA Saclay) 2 University Paris Sud IHP, November 26, 2014 F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 1 / 27

  2. Warning This is not a non-holonomic talk. . . not even a mathematical one. Application of optimal control to the modelling of human motor control. F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 2 / 27

  3. Cost of time in human motions Outline Cost of time in human motions 1 Recovering g 2 Inverse optimal control 3 Experimental results 4 From self paced to slow/fast motions 5 F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 3 / 27

  4. Cost of time in human motions What is the duration of a natural movement? (Natural = realize one task, without constraint of time, precision,. . . ) Usual theory: duration results from the minimization of a compromise between the cost of the time and the cost of the motion. a b 40 25 35 20 effort cost 30 Cost of time [a.u.] time cost Costs [a.u.] total cost (effort + time) 25 ? 15 20 10 15 linear 10 hyperbolic 5 exponential - 5 quadratic exponential + 0 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 Duration [s] Duration [s] F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 4 / 27

  5. Cost of time in human motions Cost of the motion (in fixed time): solution of an inverse optimal control problem, large literature in the case of the arm [Flash, Shadmehr, Berret, . . . ] Cost of the time: lot of different modelling, psychologists → hyperbolic costs (concave functions) economists, behaviourists → exponential costs (convex functions) Only interpretations/explanations, no quantitative results. a b 40 25 35 20 effort cost 30 Cost of time [a.u.] time cost Costs [a.u.] total cost (effort + time) 25 ? 15 20 10 15 linear 10 hyperbolic 5 exponential - 5 quadratic exponential + 0 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 Duration [s] Duration [s] F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 5 / 27

  6. Cost of time in human motions Modelling Dynamics of the motion: ˙ x = f ( x, u ) Paradigm Any registered trajectory x ( · ) from x 0 to x f is an optimal solution of � t u min ( g ( t ) + L ( x u ( t ) , u ( t ))) dt, u 0 among all u ( · ) defined on [0 , t u ] s.t. x u (0) = x 0 , x u ( t u ) = x f . � T g ( t ) dt : cost of the time T 0 � T L ( x u , u ) : cost of the motion in fixed time T 0 F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 6 / 27

  7. Cost of time in human motions Modelling Dynamics of the motion: ˙ x = f ( x, u ) Paradigm Any registered trajectory x ( · ) from x 0 to x f is an optimal solution of � t u min ( g ( t ) + L ( x u ( t ) , u ( t ))) dt, u 0 among all u ( · ) defined on [0 , t u ] s.t. x u (0) = x 0 , x u ( t u ) = x f . � T g ( t ) dt : cost of the time T ← what we are looking for! 0 � T L ( x u , u ) : cost of the motion in fixed time T 0 F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 6 / 27

  8. Recovering g Outline Cost of time in human motions 1 Recovering g 2 Inverse optimal control 3 Experimental results 4 From self paced to slow/fast motions 5 F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 7 / 27

  9. Recovering g Necessary condition Fix x f . Value function of the problem in fixed time : � t L ( x u , u ) : for x u joining x to x f in time t } V ( t, x ) = inf { 0 Set T = movement time from x 0 to x f . Then � � t g ( s ) ds + V ( t, x 0 ) � T ∈ argmin , t ∈ [0 , + ∞ ) 0 and so g ( T ) = − ∂V ∂t ( T, x 0 ) . More precisely, g ( T ) = − H 0 ( x ∗ ( T ) , p ∗ ( T ) , u ∗ ( T )) where: H 0 ( x, p, u ) = � p, f ( x, u ) � + L ( x, u ) normal Hamiltonian in fixed time, ( x ∗ ( · ) , u ∗ ( · )) optimal solution in time T with adjoint vector p ∗ ( · ) . F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 8 / 27

  10. Recovering g Remark: requires two technical assumptions on the fixed time problem: existence of minimizers no abnormal minimizers (property of the dynamics) Recovering g from experimental data: Fix x f and choose initial conditions x 0 ( a ) , a ∈ [ a 1 , a 2 ] . → T ( a ) = time of motion from x 0 ( a ) to x f . Experiments − Assume a �→ T ( a ) is invertible and set a ∗ ( t ) = T − 1 ( t ) [Ex: a amplitude ⇒ T ր ] g ( t ) = − ∂V ∂t ( t, x 0 ( a ∗ ( t ))) . Then F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 9 / 27

  11. Recovering g Conclusion Given the cost of motion L ( x, u ) , the cost of time g can be deduced from simple experiments. Problems: how to determine L ( x, u ) ? Robustness of the construction of g ? F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 10 / 27

  12. Inverse optimal control Outline Cost of time in human motions 1 Recovering g 2 Inverse optimal control 3 Experimental results 4 From self paced to slow/fast motions 5 F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 11 / 27

  13. Inverse optimal control Inverse optimal control (Direct) Optimal control problem Given a dynamic ˙ x = f ( x, u ) , a cost C ( x u ) and a pair of points x 0 , x 1 , find a trajectory x u ∗ solution of inf { C ( x u ) : x u traj. s.t. x u (0) = x 0 , x u ( T ) = x 1 } . Inverse optimal control problem Given ˙ x = f ( x, u ) and a set Γ of trajectories, find a cost C ( x u ) such that every γ ∈ Γ is solution of inf { C ( x u ) : x u traj. s.t. x u (0) = γ (0) , x u ( T ) = γ ( T ) } . Applications to analysis/modelling of human motor control (physiology) → looking for optimality principles F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 12 / 27

  14. Inverse optimal control Inverse problem: Choose a class C of reasonable costs and let Φ : C ∈ C �→ Γ optimal synthesis . Inverse optimal control problem = find an inverse Φ − 1 . Well-posed problem? Φ injective? Continuity (and stability) of Φ − 1 ? → Very few general results: Calculus of Variations case [Krupkova, Prince,. . . 1990-2000’s], Linear-Quadratic case [Kalmann 64, Nori-Frezza 04], numerical methods [Mombaur-Laumond 2010, Pauwels-Henrion-Lasserre 2014] F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 13 / 27

  15. Inverse optimal control Theoretical result Dynamics = the one of the 1 doF arm motion (single-input linear system) Let SC = set of smooth functions L ( x, u ) such that ∂ 2 L ∂u 2 > 0 (strict convexity) (0 , 0) unique minimum, L (0 , 0) = 0 , and ∂ 2 L ∂u 2 (0 , 0) = 1 (normalization) Theorem There exists a dense subset Ω s.t. Φ injective on Ω . (Proof based on Thom transversality) Open questions: continuity of (Φ | Ω ) − 1 ? Φ(Ω) dense in Φ( SC ) ? F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 14 / 27

  16. Inverse optimal control Practical point of view x = Ax + Bu , x ∈ R n . Linear dynamics: ˙ Class of admissible costs = class of quadratic costs, C = { L ( x, u ) = u T Qu + x T Rx + 2 x T Su, Q ≻ 0 , L sym, � 0 } . → optimal controls in time T of the form u ( t ) = K T ( t ) x ( t ) . Remark: { K T ( · ) , T > 0 } uniquely determined by a pair ( K − , K + ) , optimal solutions in time T of the form: x ( t ) = e ( A + BK + ) t y + + e ( A + BK − )( t − T ) y − . Hyp: Single input case, i.e. u ∈ R F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 15 / 27

  17. Inverse optimal control Theorem (adapted from Nori-Frezza, 2004), single-input case For any L ∈ C , there exists a unique k ∈ R n s.t. ( u − k T x ) 2 � � Φ( L ) = Φ . Moreover, ( K − , K + ) �→ k continuous ( k = − K T + ). → the inverse optimal control problem is well-posed. Application to the computation of g Find ( K − , K + ) by identification from experimental data; + and L ( x, u ) = ( u − k T x ) 2 ; set k = − K T compute the function ∂V ∂t ( t, x ) using the Hamiltonian; set g ( t ) = − ∂V ∂t ( t, x 0 ( a ∗ ( t ))) . → Method robust w.r.t. perturbations of the data and w.r.t. the choice of cost. F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 16 / 27

  18. Inverse optimal control Quantitative result: Assume x f = 0 and x 0 ( a ) = ax 0 (1) . Then: ∂V ∂t ( T, x 0 ) = − u a ( T ) 2 , where u a ( · ) = optimal control from x 0 ( a ) to x f in time T . u a ( T ) = aν ( T ) , where e − ( A + BK − ) T − e − ( A + BK + ) T � − 1 � x 0 (1) . ν ( T ) = ( K + − K − ) g ( t ) = ν ( t ) 2 a ∗ ( t ) 2 ⇒ F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 17 / 27

  19. Experimental results Outline Cost of time in human motions 1 Recovering g 2 Inverse optimal control 3 Experimental results 4 From self paced to slow/fast motions 5 F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 18 / 27

  20. Experimental results Two kind of motions: Pointing motions of the arm in a horizontal plane (1 degree of freedom), Saccadic eye movements. In both cases: the dynamic is of the form: θ ( n ) + c n − 1 θ ( n − 1) + · · · + c 0 θ = u, → linear with a state x = ( θ, ˙ θ, . . . , θ ( n − 1) ) ( n = 2 or 3 in general) Initial and final states are equilibria, typically: x f = 0 . x 0 ( a ) = ( a, 0 , . . . , 0) and F. Jean (ENSTA) Why don’t we move slower? IHP, 2014 19 / 27

Recommend


More recommend