Introduction Velocities Tangent Lines Rates of Change Driving From Kansas To Virginia 1. Distance: 1 , 300 mi , driving time: 3 days 2. v avg = distance traveled = 1 , 300 mi ≈ 433 . 33 mi day, time needed 3 days useful to plan where to book hotels along the way, etc. 3. Average velocity is always v avg = s t 4. Suppose after driving 200 miles in the first four hours (you’re in Missouri), a highway patrolman stops you and reveals that you’ve been going 65 mph in an area in which the speed limit is 55 mph . v = 200 mi 4 hrs = 50 mph ??? 5. Even sensible average velocity can look strange: 433 . 33 mi day = 433 . 33 mi 24 hr ≈ 18 . 06mi hr 6. We need a way to define instantaneous velocity. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Tangent Lines logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Tangent Lines logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Tangent Lines logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Tangent Lines logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Tangent Lines logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Tangent Lines logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Tangent Lines logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Tangent Lines logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Tangent Lines logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. Let s be a position function. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. Let s be a position function. We define the average velocity in the interval [ a , b ] by v avg : = s ( b ) − s ( a ) . b − a logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 2.01 -19.649 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 2.01 -19.649 2.001 -19.6049 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 2.01 -19.649 2.001 -19.6049 2.0001 -19.6005 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 2.01 -19.649 2.001 -19.6049 2.0001 -19.6005 2 undefined logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 2.01 -19.649 2.001 -19.6049 2.0001 -19.6005 2 undefined logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 2.01 -19.649 2.001 -19.6049 2.0001 -19.6005 2 undefined 1.9 -19.11 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 2.01 -19.649 2.001 -19.6049 2.0001 -19.6005 2 undefined 1.99 -19.551 1.9 -19.11 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 2.01 -19.649 2.001 -19.6049 2.0001 -19.6005 2 undefined 1.999 -19.5951 1.99 -19.551 1.9 -19.11 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 2.01 -19.649 2.001 -19.6049 2.0001 -19.6005 2 undefined 1.9999 -19.5995 1.999 -19.5951 1.99 -19.551 1.9 -19.11 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] s ( b ) − s ( 2 ) b b − 2 2.1 -20.09 2.01 -19.649 2.001 -19.6049 2.0001 -19.6005 2 undefined ( − 19 . 6 “feels right”) 1.9999 -19.5995 1.999 -19.5951 1.99 -19.551 1.9 -19.11 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. Let s be a position function. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. Let s be a position function. We define the instantaneous velocity at a by s ( b ) − s ( a ) v inst : = lim . b − a b → a logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] . s ( b ) − s ( 2 ) lim b − 2 b → 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] . − 4 . 9 b 2 + 20 − − 4 . 9 · 2 2 + 20 � � s ( b ) − s ( 2 ) = lim lim b − 2 b − 2 b → 2 b → 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] . − 4 . 9 b 2 + 20 − − 4 . 9 · 2 2 + 20 � � s ( b ) − s ( 2 ) = lim lim b − 2 b − 2 b → 2 b → 2 − 4 . 9 b 2 + 4 . 9 · 2 2 = lim b − 2 b → 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] . − 4 . 9 b 2 + 20 − − 4 . 9 · 2 2 + 20 � � s ( b ) − s ( 2 ) = lim lim b − 2 b − 2 b → 2 b → 2 − 4 . 9 b 2 + 4 . 9 · 2 2 = lim b − 2 b → 2 � b 2 − 2 2 � − 4 . 9 = lim b − 2 b → 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] . − 4 . 9 b 2 + 20 − − 4 . 9 · 2 2 + 20 � � s ( b ) − s ( 2 ) = lim lim b − 2 b − 2 b → 2 b → 2 − 4 . 9 b 2 + 4 . 9 · 2 2 = lim b − 2 b → 2 � b 2 − 2 2 � − 4 . 9 = lim b − 2 b → 2 − 4 . 9 ( b + 2 )( b − 2 ) = lim b − 2 b → 2 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] . − 4 . 9 b 2 + 20 − − 4 . 9 · 2 2 + 20 � � s ( b ) − s ( 2 ) = lim lim b − 2 b − 2 b → 2 b → 2 − 4 . 9 b 2 + 4 . 9 · 2 2 = lim b − 2 b → 2 � b 2 − 2 2 � − 4 . 9 = lim b − 2 b → 2 − 4 . 9 ( b + 2 )( b − 2 ) = lim b − 2 b → 2 = b → 2 − 4 . 9 ( b + 2 ) lim logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Find the Instantaneous Velocity of a Coin with Vertical Position s ( t ) = − 4 . 9 t 2 + 20 [ m ] at Time t = 2 [ s ] . − 4 . 9 b 2 + 20 − − 4 . 9 · 2 2 + 20 � � s ( b ) − s ( 2 ) = lim lim b − 2 b − 2 b → 2 b → 2 − 4 . 9 b 2 + 4 . 9 · 2 2 = lim b − 2 b → 2 � b 2 − 2 2 � − 4 . 9 = lim b − 2 b → 2 − 4 . 9 ( b + 2 )( b − 2 ) = lim b − 2 b → 2 = b → 2 − 4 . 9 ( b + 2 ) = − 19 . 6 lim logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. Let f be a function. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. Let f be a function. The secant line of f through � � � � a , f ( a ) and b , f ( b ) logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. Let f be a function. The secant line of f through � � � � a , f ( a ) and b , f ( b ) is the unique straight line that goes � � � � a , f ( a ) b , f ( b ) through the points and . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. Let f be a function. The secant line of f through � � � � a , f ( a ) and b , f ( b ) is the unique straight line that goes � � � � a , f ( a ) b , f ( b ) through the points and . Definition. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. Let f be a function. The secant line of f through � � � � a , f ( a ) and b , f ( b ) is the unique straight line that goes � � � � a , f ( a ) b , f ( b ) through the points and . Definition. Let f be a function. The tangent line of f at � � a , f ( a ) logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. Let f be a function. The secant line of f through � � � � a , f ( a ) and b , f ( b ) is the unique straight line that goes � � � � a , f ( a ) b , f ( b ) through the points and . Definition. Let f be a function. The tangent line of f at � � a , f ( a ) (if it exists) is the unique line that goes through � � a , f ( a ) whose slope is f ( b ) − f ( a ) lim . b − a b → a logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 f ( b ) − f ( − 1 ) lim b − ( − 1 ) b →− 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 b 3 − 4 b + 1 − 4 f ( b ) − f ( − 1 ) = lim lim b − ( − 1 ) b + 1 b →− 1 b →− 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 b 3 − 4 b + 1 − 4 b 3 − 4 b − 3 f ( b ) − f ( − 1 ) = = lim lim lim b − ( − 1 ) b + 1 b + 1 b →− 1 b →− 1 b →− 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 b 3 − 4 b + 1 − 4 b 3 − 4 b − 3 f ( b ) − f ( − 1 ) = = lim lim lim b − ( − 1 ) b + 1 b + 1 b →− 1 b →− 1 b →− 1 ( − 1 + h ) 3 − 4 ( − 1 + h ) − 3 = lim ( − 1 + h )+ 1 h → 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 b 3 − 4 b + 1 − 4 b 3 − 4 b − 3 f ( b ) − f ( − 1 ) = = lim lim lim b − ( − 1 ) b + 1 b + 1 b →− 1 b →− 1 b →− 1 ( − 1 + h ) 3 − 4 ( − 1 + h ) − 3 = lim ( − 1 + h )+ 1 h → 0 − 1 + 3 h − 3 h 2 + h 3 + 4 − 4 h − 3 = lim h h → 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 b 3 − 4 b + 1 − 4 b 3 − 4 b − 3 f ( b ) − f ( − 1 ) = = lim lim lim b − ( − 1 ) b + 1 b + 1 b →− 1 b →− 1 b →− 1 ( − 1 + h ) 3 − 4 ( − 1 + h ) − 3 = lim ( − 1 + h )+ 1 h → 0 − 1 + 3 h − 3 h 2 + h 3 + 4 − 4 h − 3 = lim h h → 0 h 3 − 3 h 2 − h = lim h h → 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 b 3 − 4 b + 1 − 4 b 3 − 4 b − 3 f ( b ) − f ( − 1 ) = = lim lim lim b − ( − 1 ) b + 1 b + 1 b →− 1 b →− 1 b →− 1 ( − 1 + h ) 3 − 4 ( − 1 + h ) − 3 = lim ( − 1 + h )+ 1 h → 0 − 1 + 3 h − 3 h 2 + h 3 + 4 − 4 h − 3 = lim h h → 0 � h 2 − 3 h − 1 � h 3 − 3 h 2 − h h = = lim lim h h h → 0 h → 0 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 b 3 − 4 b + 1 − 4 b 3 − 4 b − 3 f ( b ) − f ( − 1 ) = = lim lim lim b − ( − 1 ) b + 1 b + 1 b →− 1 b →− 1 b →− 1 ( − 1 + h ) 3 − 4 ( − 1 + h ) − 3 = lim ( − 1 + h )+ 1 h → 0 − 1 + 3 h − 3 h 2 + h 3 + 4 − 4 h − 3 = lim h h → 0 � h 2 − 3 h − 1 � h 3 − 3 h 2 − h h = = lim lim h h h → 0 h → 0 h → 0 h 2 − 3 h − 1 = lim logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 b 3 − 4 b + 1 − 4 b 3 − 4 b − 3 f ( b ) − f ( − 1 ) = = lim lim lim b − ( − 1 ) b + 1 b + 1 b →− 1 b →− 1 b →− 1 ( − 1 + h ) 3 − 4 ( − 1 + h ) − 3 = lim ( − 1 + h )+ 1 h → 0 − 1 + 3 h − 3 h 2 + h 3 + 4 − 4 h − 3 = lim h h → 0 � h 2 − 3 h − 1 � h 3 − 3 h 2 − h h = = lim lim h h h → 0 h → 0 h → 0 h 2 − 3 h − 1 = − 1 = lim logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 Slope: − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 Slope: − 1, point: ( − 1 , 4 ) . logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 Slope: − 1, point: ( − 1 , 4 ) . = mx + b y logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 Slope: − 1, point: ( − 1 , 4 ) . = mx + b y 4 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 Slope: − 1, point: ( − 1 , 4 ) . = mx + b y = ( − 1 ) 4 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 Slope: − 1, point: ( − 1 , 4 ) . = mx + b y = ( − 1 )( − 1 ) 4 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 Slope: − 1, point: ( − 1 , 4 ) . = mx + b y = ( − 1 )( − 1 )+ b 4 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 Slope: − 1, point: ( − 1 , 4 ) . = mx + b y = ( − 1 )( − 1 )+ b 4 = b 3 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 Slope: − 1, point: ( − 1 , 4 ) . = mx + b y = ( − 1 )( − 1 )+ b 4 = b 3 = − x + 3 y logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Compute the Equation of the Tangent Line of f ( x ) = x 3 − 4 x + 1 at a = − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Estimate the Slope of the Tangent Line at x = 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Estimate the Slope of the Tangent Line at x = 1 ✻ 5 4 3 2 1 ✲ − 3 − 2 − 1 1 2 3 − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Estimate the Slope of the Tangent Line at x = 1 ✻ 5 4 3 2 1 ✲ − 3 − 2 − 1 1 2 3 − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Estimate the Slope of the Tangent Line at x = 1 ✻ 5 4 3 slope ≈ 2 2 1 ✲ − 3 − 2 − 1 1 2 3 − 1 logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Introduction Velocities Tangent Lines Rates of Change Definition. logo1 Bernd Schr¨ oder Louisiana Tech University, College of Engineering and Science Why Do We Need Derivatives?
Recommend
More recommend