mathematics
play

MATHEMATICS 1 CONTENTS Derivatives for functions of two variables - PowerPoint PPT Presentation

Partial derivatives BUSINESS MATHEMATICS 1 CONTENTS Derivatives for functions of two variables Higher-order partial derivatives Derivatives for functions of many variables Old exam question Further study 2 DERIVATIVES FOR FUNCTIONS OF TWO


  1. Partial derivatives BUSINESS MATHEMATICS 1

  2. CONTENTS Derivatives for functions of two variables Higher-order partial derivatives Derivatives for functions of many variables Old exam question Further study 2

  3. DERIVATIVES FOR FUNCTIONS OF TWO VARIABLES Can we find the extreme values of a function 𝑕 𝑦, 𝑧 of two variables 𝑦 and 𝑧 ? β–ͺ e.g., 𝑕 𝑦, 𝑧 = 𝑦 3 𝑧 + 𝑦 2 𝑧 2 + 𝑦 + 𝑧 2 Try 𝑕 β€² 𝑦, 𝑧 = β‹― β–ͺ this fails! Derivative of a function 𝑔 𝑦 of one variable: 𝑔 β€² 𝑦 = 𝑒𝑔 𝑦 𝑔 𝑦 + β„Ž βˆ’ 𝑔 𝑦 = lim 𝑒𝑦 β„Ž β„Žβ†’0 Generalization into partial derivative of 𝑕 𝑦, 𝑧 of 2 variables: πœ–π‘• 𝑦, 𝑧 𝑕 𝑦 + β„Ž, 𝑧 βˆ’ 𝑕 𝑦, 𝑧 = lim πœ–π‘¦ β„Ž β„Žβ†’0 3

  4. DERIVATIVES FOR FUNCTIONS OF TWO VARIABLES So differentiate β–ͺ 𝑕 𝑦, 𝑧 = 𝑦 3 𝑧 + 𝑦 2 𝑧 2 + 𝑦 + 𝑧 2 with respect to 𝑦 , keeping 𝑧 fixed πœ–π‘• πœ–π‘¦ = 3𝑦 2 𝑧 + 2𝑦𝑧 2 + 1 β–ͺ and with respect to 𝑧 , keeping 𝑦 fixed πœ–π‘• πœ–π‘§ = 𝑦 3 + 2𝑦 2 𝑧 + 2𝑧 β–ͺ πœ–π‘• πœ–π‘• Clearly, in this case πœ–π‘¦ β‰  πœ–π‘§ β–ͺ therefore, never write 𝑔 β€² for a function of two variables! 4

  5. DERIVATIVES FOR FUNCTIONS OF TWO VARIABLES So we define the partial derivative of 𝑔 with respect to 𝑦 πœ–π‘” 𝑦, y 𝑔 𝑦 + β„Ž, 𝑧 βˆ’ 𝑔 𝑦, 𝑧 = lim πœ–π‘¦ β„Ž β„Žβ†’0 And similar with respect to 𝑧 πœ–π‘” 𝑦, y 𝑔 𝑦, 𝑧 + β„Ž βˆ’ 𝑔 𝑦, 𝑧 = lim πœ–π‘§ β„Ž β„Žβ†’0 5

  6. DERIVATIVES FOR FUNCTIONS OF TWO VARIABLES πœ–π‘” 𝑦, 𝑧 πœ–π‘¦ πœ–π‘” 𝑦, 𝑧 πœ–π‘§ 6

  7. DERIVATIVES FOR FUNCTIONS OF TWO VARIABLES Alternative notations πœ–π‘” β–ͺ πœ–π‘¦ πœ–π‘” 𝑦,𝑧 β–ͺ πœ–π‘¦ β–ͺ 𝑔 β€² 𝑦 β–ͺ 𝑔 β€² Not important to remember, 1 but important to recognize β–ͺ 𝑔 𝑦 β–ͺ 𝑔 1 β–ͺ πœ– 𝑦 𝑔 so, basically a lot of choice, β–ͺ etc. but never write 𝑒𝑔 𝑒𝑦 or 𝑔 β€² 7

  8. DERIVATIVES FOR FUNCTIONS OF TWO VARIABLES The partial derivative in a point is a number πœ–π‘” 𝑦,𝑧 β–ͺ e.g., 𝑦,𝑧 = 2,βˆ’5 = βˆ’3 πœ–π‘¦ The partial derivative over a range of points is a function of 𝑦 and 𝑧 πœ–π‘” 𝑦,𝑧 β–ͺ e.g., = 2𝑦 + 3𝑧 βˆ’ 6 πœ–π‘¦ 8

  9. DERIVATIVES FOR FUNCTIONS OF TWO VARIABLES Example: Cobb-Douglas production function β–ͺ decribing how a firm’s output π‘Ÿ depends on capital input ( 𝐿 ) and labour input ( 𝑀 ) π‘Ÿ 𝐿, 𝑀 = 𝐡 Γ— 𝐿 𝛽 Γ— 𝑀 𝛾 β–ͺ where 𝐡 , 𝛽 , and 𝛾 are positive constants πœ–π‘Ÿ Marginal productivity of capital: πœ–πΏ πœ–π‘Ÿ πœ–πΏ = 𝐡 Γ— 𝛽 Γ— 𝐿 π›½βˆ’1 Γ— 𝑀 𝛾 πœ–π‘Ÿ β–ͺ when 0 < 𝛽 < 1 , πœ–πΏ is a decreasing function of 𝐿 β–ͺ diminishing marginal returns 9

  10. EXERCISE 1 πœ–π‘” πœ–π‘” Given is 𝑔 𝑦, 𝑧 = 𝑦 2 𝑓 2𝑧 . Find πœ–π‘¦ and πœ–π‘§ . 10

  11. EXERCISE 2 πœ–π‘” πœ–π‘” Given is 𝑔 𝑦, 𝑧 = 𝑦 𝑧 . Find πœ–π‘¦ and πœ–π‘§ . 12

  12. HIGHER-ORDER PARTIAL DERIVATIVES Recall the second derivative 𝑒 2 𝑔 𝑦 𝑒 𝑒𝑔 𝑦 = 𝑔 β€²β€² 𝑦 β–ͺ = 𝑒𝑦 2 𝑒𝑦 𝑒𝑦 Four possibilities for function 𝑕 𝑦, 𝑧 : πœ– 2 𝑕 πœ– πœ–π‘• β–ͺ = πœ–π‘¦ 2 πœ–π‘¦ πœ–π‘¦ πœ– 2 𝑕 πœ– πœ–π‘• β–ͺ πœ–π‘§ = πœ–π‘§ 2 πœ–π‘§ πœ– 2 𝑕 πœ– πœ–π‘• β–ͺ = πœ–π‘§ πœ–π‘¦ πœ–π‘§πœ–π‘¦ πœ– 2 𝑕 πœ– πœ–π‘• β–ͺ πœ–π‘§ = so, never 𝑒 2 𝑕 𝑒𝑦 2 or 𝑕 β€²β€² πœ–π‘¦ πœ–π‘¦πœ–π‘§ Alternative notations: πœ– 2 𝑕 πœ–π‘• 𝑦,𝑧 πœ–π‘¦πœ–π‘§ , πœ–π‘¦πœ–π‘§ , 𝑕 β€²β€² 𝑧𝑦 , 𝑕 β€²β€² 21 , 𝑕 𝑧𝑦 , 𝑕 21 , πœ– 𝑦𝑧 𝑕 , etc. β–ͺ 14

  13. HIGHER-ORDER PARTIAL DERIVATIVES Example: 𝑕 𝑦, 𝑧 = 𝑦 3 𝑧 + 𝑦 2 𝑧 2 + 𝑦 + 𝑧 2 πœ– 2 𝑕 πœ–π‘¦ 2 = 6𝑦𝑧 + 2𝑧 2 β–ͺ πœ– 2 𝑕 πœ–π‘§ 2 = 2𝑦 2 + 2 β–ͺ πœ– 2 𝑕 πœ–π‘¦πœ–π‘§ = 3𝑦 2 + 4𝑦𝑧 β–ͺ πœ– 2 𝑕 πœ–π‘§πœ–π‘¦ = 3𝑦 2 + 4𝑦𝑧 β–ͺ πœ– 2 𝑕 πœ– 2 𝑕 For almost all functions πœ–π‘¦πœ–π‘§ = πœ–π‘§πœ–π‘¦ β–ͺ and certainly for all functions we encounter in business and economics 15

  14. EXERCISE 3 πœ– 2 𝑔 Given is 𝑔 𝑦, 𝑧 = 4𝑦 3 𝑧 2 βˆ’ 3𝑧 4 𝑓 2𝑦 . Find πœ–π‘¦πœ–π‘§ in 𝑦, 𝑧 = βˆ’1,0 . 16

  15. HIGHER-ORDER PARTIAL DERIVATIVES Likewise, we can define third-order πœ– 3 𝑔 πœ– πœ– πœ–π‘” 𝑦,𝑧 β–ͺ = πœ–π‘¦ 3 πœ–π‘¦ πœ–π‘¦ πœ–π‘¦ πœ– 3 𝑔 πœ– πœ– πœ–π‘” 𝑦,𝑧 β–ͺ = πœ–π‘§ 2 πœ–π‘¦ πœ–π‘§ πœ–π‘§ πœ–π‘¦ β–ͺ how many are there? β–ͺ how many are different? And even higher-order partial derivatives πœ– π‘œ 𝑔 β–ͺ πœ–π‘¦ π‘œ πœ– π‘œ 𝑔 β–ͺ πœ–π‘¦ π‘œβˆ’1 πœ–π‘§ β–ͺ etc. 18

  16. DERIVATIVES FOR FUNCTIONS OF MANY VARIABLES Let 𝑔 𝑦 1 , 𝑦 2 , 𝑦 3 , … , 𝑦 π‘œ We can form π‘œ first-order partial derivatives πœ–π‘” πœ–π‘” πœ–π‘” β–ͺ πœ–π‘¦ 1 , πœ–π‘¦ 2 , … , πœ–π‘¦ π‘œ and many many second-order partial derivatives 19

  17. EXERCISE 4 1 πœ–π‘• π‘œ Given is 𝑕 𝐲 = 𝑦 𝑗 . Find πœ–π‘¦ 4 . π‘œ Οƒ 𝑗=1 20

  18. OLD EXAM QUESTION 27 March 2015, Q1b 22

  19. OLD EXAM QUESTION 22 October 2014, Q1h 23

  20. FURTHER STUDY Sydsæter et al. 5/E 11.1-11.2 Tutorial exercises week 2 partial derivatives higher-order partial derivatives partial derivatives graphically 24

Recommend


More recommend