when computer arithmetic and signal processing meet
play

When computer arithmetic and signal processing meet Anastasia - PowerPoint PPT Presentation

Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG When computer arithmetic and signal processing meet Anastasia Volkova, Thibault Hilaire , Christoph Lauter Metalbim workshop, March


  1. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG When computer arithmetic and signal processing meet Anastasia Volkova, Thibault Hilaire , Christoph Lauter Metalbim workshop, March 12th, 2018 Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 1/23

  2. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Plan 1 Context and problematics 2 Determining the Most Significant Bit 3 Compute the quantized transfer function 4 WCPG Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 2/23

  3. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Applications: reliable systems Digital filters: Algorithms that transform digital signals • Do not need guarantee in the majority of applications • A guarantee is necessary in other applications. Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 3/23

  4. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Applications: reliable systems Digital filters: Algorithms that transform digital signals • Do not need guarantee in the majority of applications • A guarantee is necessary in other applications. We are interested in guarantees related to the implementation of numerical algorithms, especially in the embedded systems. Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 3/23

  5. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Automation The implementation is done in several steps: Constraints Software Mathematical Numerical Code algorithm algorithm generation Specifications Numerous constraints: • performance • energy consumption • surface • memory • accuracy • etc. We are interested in the automated process of reliable implementation. Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 4/23

  6. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Arithmetics 2 w − 1 2 0 • Integer arithmetic: y = Y w Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 5/23

  7. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Arithmetics 2 w − 1 2 0 • Integer arithmetic: y = Y w 2 0 2 − 1 − 2 m 2 ℓ • Fixed-Point arithmetic: y = Y · 2 ℓ m + 1 − ℓ where ℓ is an implicit factor w Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 5/23

  8. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Arithmetics 2 w − 1 2 0 • Integer arithmetic: y = Y w 2 0 2 − 1 − 2 m 2 ℓ • Fixed-Point arithmetic: y = Y · 2 ℓ m + 1 − ℓ where ℓ is an implicit factor w • Floating-Point arithmetic: s y = ( − 1 ) s · Y · 2 e exponent mantissa where e is an explicit factor Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 5/23

  9. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Arithmetics 2 w − 1 2 0 • Integer arithmetic: y = Y w 2 0 2 − 1 − 2 m 2 ℓ • Fixed-Point arithmetic: y = Y · 2 ℓ m + 1 − ℓ where ℓ is an implicit factor w • Floating-Point arithmetic: s y = ( − 1 ) s · Y · 2 e exponent mantissa where e is an explicit factor • Interval arithmetic: � � [ y , y ] = y ∈ R | y � y � y Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 5/23

  10. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Arithmetics 2 w − 1 2 0 • Integer arithmetic: y = Y w 2 0 2 − 1 − 2 m 2 ℓ • Fixed-Point arithmetic: y = Y · 2 ℓ m + 1 − ℓ where ℓ is an implicit factor w • Floating-Point arithmetic: s y = ( − 1 ) s · Y · 2 e exponent mantissa where e is an explicit factor • Interval arithmetic: � � [ y , y ] = y ∈ R | y � y � y • Multiple-Precision arithmetic: the size of the mantissa varies dynamically Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 5/23

  11. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Arithmetics • Fixed-Point arithmetic: y = Y · 2 ℓ For the implementation where ℓ is an implicit factor • Floating-Point arithmetic: y = ( − 1 ) s · Y · 2 e For the error analysis where e is an explicit factor • Interval arithmetic: � � For the error analysis [ y , y ] = y ∈ R | y � y � y • Multiple-Precision arithmetic: the size For the error analysis of the mantissa varies dynamically Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 5/23

  12. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG State-space representation State-space representation of an LTI filter H : � x ( k + 1 ) = Ax ( k ) + b u ( k ) H y ( k ) = cx ( k ) + du ( k ) Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 6/23

  13. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Range of variables Worst-Case Peak Gain Input u ( k ) Output y ( k ) Stable filter Amplitude Amplitude H Temps Temps Amplification/Attenuation ∀ k , | u ( k ) | � ¯ u ∀ k , | y ( k ) | � � �H� � ¯ u � � � ∞ � cA k b � Worst-Case Peak Gain: � �H� � = � h � 1 = | d | + k = 0 Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 7/23

  14. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Plan 1 Context and problematics 2 Determining the Most Significant Bit 3 Compute the quantized transfer function 4 WCPG Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 8/23

  15. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Reliable numerical algorithms H ( z ) SIF H ( z ) C to SIF Code generation SIF Fixed-Point Software algorithm formats Simulink SIF Simulink to graph SIF Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 9/23

  16. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Reliable numerical algorithms H ( z ) SIF H ( z ) C to SIF Code generation SIF Fixed-Point Software algorithm formats Simulink SIF Simulink to graph SIF Most Significant Bit Least Significant Bit Fixed-Point format Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 9/23

  17. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Problem of the format choice • Constraints : wordlength w y is fixed for the output variable y • Goal : no overflows, rigorous error bounds • Bonus : minimize the errors Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 10/23

  18. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Problem of the format choice • Constraints : wordlength w y is fixed for the output variable y • Goal : no overflows, rigorous error bounds • Bonus : minimize the errors � x ( k + 1 ) = Ax ( k ) + b u ( k ) H y ( k ) = cx ( k ) + du ( k ) Problem : find the smallest MSB position m y such that for all k 2 m y � 1 − 2 − w y + 1 � | y ( k ) | � Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 10/23

  19. Context and problematics Determining the Most Significant Bit Compute the quantized transfer function WCPG Problem of the format choice • Constraints : wordlength w y is fixed for the output variable y • Goal : no overflows, rigorous error bounds • Bonus : minimize the errors � x ( k + 1 ) = Ax ( k ) + b u ( k ) H y ( k ) = cx ( k ) + du ( k ) Problem : find the smallest MSB position m y such that for all k 2 m y � 1 − 2 − w y + 1 � � �H� � ¯ u = | y ( k ) | � Mathematical solution : � � 1 − 2 1 − w y �� m y = log 2 ( � �H� � ¯ u ) − log 2 Signal processing / computer arithmetic – Metalibm workshop T. Hilaire (thibault.hilaire@lip6.fr) 10/23

Recommend


More recommend