welcome to the welcome to the pierre auger pierre auger
play

WELCOME TO THE WELCOME TO THE PIERRE AUGER PIERRE AUGER - PowerPoint PPT Presentation

WELCOME TO THE WELCOME TO THE PIERRE AUGER PIERRE AUGER OBSERVATORY! OBSERVATORY! OBSERVATORIO PIERRE AUGER ISAPP, MALARGE, 2019 ISAPP, MALARGE, 2019 Ingo Allekotte Project Manager ingo@cab.cnea.gov.ar A BIT OF HISTORY A BIT OF


  1. WELCOME TO THE WELCOME TO THE PIERRE AUGER PIERRE AUGER OBSERVATORY! OBSERVATORY! OBSERVATORIO PIERRE AUGER ISAPP, MALARGÜE, 2019 ISAPP, MALARGÜE, 2019 Ingo Allekotte Project Manager ingo@cab.cnea.gov.ar

  2. A BIT OF HISTORY A BIT OF HISTORY ● End of XIX Century: radioactivity known, highly penetrating radiation discovered. ● 1912: Viktor Hess flies up to 5000 m altitude with electroscopes: DISCOVERY OF COSMIC ORIGIN OF RADIATION!

  3. A BIT OF HISTORY A BIT OF HISTORY ● 1930's Millikan-Compton debate composition: particles or photons? Denomination as “Cosmic Rays” misleading CR are mostly charged massive particles.

  4. A BIT OF HISTORY A BIT OF HISTORY ● 1930's Millikan-Compton debate composition: particles or photons? Denomination as “Cosmic Rays” misleading CR are mostly charged massive particles.

  5. A BIT OF HISTORY A BIT OF HISTORY ● 1938: Pierre Auger discovers “Extensive Air Showers”. ● Coincidences in Geiger counters ● Shower components: - Electrons, positrons, photons - Muons - Hadrons ● Energy of primary: estimated above 10 15 eV

  6. A BIT OF HISTORY A BIT OF HISTORY ● 1950´s: CNEA performs cosmic ray studies in Mendoza, Argentina. ● Photographic emulsions to study particle interactions

  7. A BIT OF HISTORY A BIT OF HISTORY ● 1950´s: CNEA performs cosmic ray studies in Mendoza, Argentina. ● Photographic emulsions to study particle interactions

  8. LHC Auger {

  9. A BIT OF HISTORY A BIT OF HISTORY ● At “low” energies: satellite experiments to study primary cosmic rays ● At high energies: ground-based experiments: - Volcano Ranch (USA) - Yakutsk (USSR) - Sugar (Australia) - Agasa (Japan) - Haverah Park (UK) - Kascade - KGrande (Germany) - Fly's Eye - HiRes - Telescope Array (USA) Events with E > 10 20 eV! GZK cutoff: interaction with CMBR propagation?

  10. A BIT OF HISTORY A BIT OF HISTORY - Agasa (Japan): scintillator surface detectors - HiRes: atmospheric fluorescence detectors Interaction with CMBR? GZK cutoff? Origin of UHECRs? UHECR astronomy? Composition? Magnetic fields? New physics?

  11. THE PIERRE AUGER OBSERVATORY in Malargüe, Argentina Problems with Ultra-High Energy Cosmic Rays (E > 10 18 eV): • very few! (one per km 2 per CENTURY at E > 10 19 eV) • sources unknown • source location unknown • propagation not understood • composition unknown James Cronin, 1931-2016 Chicago University • ultra-high energy collissions never studied • unknown unknowns?

  12. “THE GIANT ARRAY PROJECT” (still today, we have GAP-Notes) 1992 - 1995: To build a 5000 km2 detector Hybrid: surface detectors and fluorescence detectors Both hemispheres James Cronin, Chicago University Alan Watson, Univ. of Leeds In the South: Australia? South Africa? Argentina? (Mendoza? Patagonia?)

  13. “THE GIANT ARRAY PROJECT” (still today, we have GAP-Notes) 1992 - 1995: To build a 5000 km2 detector Both hemispheres In the South: Australia? James Cronin, 1931-2016 South Africa? Chicago University Argentina? (Mendoza? Patagonia?)

  14. “THE GIANT ARRAY PROJECT” (still today, we have GAP-Notes) 1992 - 1995: To build a 5000 km2 detector Both hemispheres In the South: Australia? James Cronin, 1931-2016 South Africa? Chicago University Argentina? (Mendoza? Patagonia?)

  15. “THE GIANT ARRAY PROJECT” (still today, we have GAP-Notes)

  16. What was needed to tackle the challenge: • 18 countries (nowadays 17) • 86 institutions • > 500 scientists, engineers, technicians • $(USD) 53 millions (construction costs) • a 3000 km 2 flat surface… • Belgium

  17. What was needed to tackle the challenge: • 18 countries (nowadays 17) • 86 institutions • > 500 scientists, engineers, technicians • $(USD) 53 millions (construction costs) • a 3000 km 2 flat surface… •

  18. The Pierre Auger Observatory The Pierre Auger Observatory Ultra-high energy cosmic rays: Ultra-high energy cosmic rays: Very few - large surface: Very few - large surface: 3000 km 2 ! Hybrid system: Hybrid system: - 1600 surface detectors sample - 1600 surface detectors sample particles at ground level particles at ground level - 27 telescopes collect - 27 telescopes collect fluorescence light in atmosphere fluorescence light in atmosphere (in 4 buildings + 3 “containers”) (in 4 buildings + 3 “containers”) Reconstruction of Energy, Reconstruction of Energy, direction, composition, time direction, composition, time

  19. PIERRE AUGER OBSERVATORY PIERRE AUGER OBSERVATORY

  20. 1600 surface detectors. Spacing: 1500 m. (Cherenkov radiation)

  21. SURFACE DETECTORS SURFACE DETECTORS

  22. FLUORESCENCE TELESCOPES FLUORESCENCE TELESCOPES CAMERA 440 PHOTOTUBES FILTER + APERTURE MIRRORS 3,6 m x 3,6 m, with 30º X 30º aperture

  23. TELESCOPE BUILDINGS Coihueco Los Leones Loma Amarilla Los Morados 24 telescopes in 4 buildings

  24. FLUORESCENCE DETECTORS FD for ENERGY Callibration E proportional to fluorescence light Los Leones Composition: Xmax showe maximum HEAT: larger elevation, lower energy

  25. ATMOSPHERIC MONITORING SYSTEMS ATMOSPHERIC MONITORING SYSTEMS Central Laser Facility - CLF + XLF Photometric telescope Aerosol Monitors IR Cloud Cameras

  26. ATMOSPHERIC MONITORING SYSTEMS: ATMOSPHERIC MONITORING SYSTEMS: atmospheric LIDARs atmospheric LIDARs Central Laser Facility - CLF + XLF Photometric telescope Aerosol Monitors

  27. OPERATION OF THE OBSERVATORY OPERATION OF THE OBSERVATORY Central Station + Assembly Building Central Station + Assembly Building

  28. OPERATION OF THE OBSERVATORY OPERATION OF THE OBSERVATORY Local staff: 33 persons Local staff: 33 persons Visiting scientists and technicians Visiting scientists and technicians Task groups Task groups Local FD shifts Local FD shifts Remote FD shifts Remote FD shifts

  29. WHAT KEEPS US BUSY NOW: AUGER “UPGRADE”: AugerPrime - until 2025! - To determine event-by-event composition at highest energies - To search for protons at high energies (particle astronomy) - Study Extended Air Showers and hadron interactions  SCINTILLATORS: SSD  UNDERGROUND MUON DETECTORS: AMIGA  RADIO DETECTION OF AIR SHOWERS  new electronics  Extension of FD uptime To be installed until 2020, 12 MEUR.

  30. AUGER “UPGRADE”: SSD SSD: 1600 plastic scintillators (4 m 2 each) combined with SD

  31. AUGER “UPGRADE”: SSD First prototypes in the field!

  32. AUGER “UPGRADE”: SSD (0) Determinar composición evento por evento a las más altas E (1) Comprender composición y el origen de la supresión a las más altas energías (2) Buscar componente protónica (10%?) a las más altas energias (3) Estudiar lluvias atmosféricas y producción hadrónica Detectores SSD (ASCII desarrollados en Bariloche) (Bertou, Berisso, Asorey, Arnaldi, Golup, Sofo-Haro) AMIGA (detectores de muones subterráneos) Nueva electrónica SD Extensión de FD

  33. AUGER “UPGRADE”: SSD (0) Determinar composición evento por evento a las más altas E (1) Comprender composición y el origen de la supresión a las más altas energías (2) Buscar componente protónica (10%?) a las más altas energias (3) Estudiar lluvias atmosféricas y producción hadrónica Detectores SSD (ASCII desarrollados en Bariloche) (Bertou, Berisso, Asorey, Arnaldi, Golup, Sofo-Haro) AMIGA (detectores de muones subterráneos) Nueva electrónica SD Extensión de FD

  34. AUGER “UPGRADE”: AMIGA (0) Determinar composición evento por evento a las más altas E (1) Comprender composición y el origen de la supresión a las más altas energías (2) Buscar componente protónica (10%?) a las más altas energias (3) Estudiar lluvias atmosféricas y producción hadrónica Detectores SSD (ASCII desarrollados en Bariloche) (Bertou, Berisso, Asorey, Arnaldi, Golup, Sofo-Haro) AMIGA (detectores de muones subterráneos) Nueva electrónica SD Extensión de FD

  35. AUGER “UPGRADE”: AMIGA (0) Determinar composición evento por evento a las más altas E (1) Comprender composición y el origen de la supresión a las más altas energías (2) Buscar componente protónica (10%?) a las más altas energias (3) Estudiar lluvias atmosféricas y producción hadrónica Detectores SSD (ASCII desarrollados en Bariloche) (Bertou, Berisso, Asorey, Arnaldi, Golup, Sofo-Haro) AMIGA (detectores de muones subterráneos) Nueva electrónica SD Extensión de FD

  36. AUGER “UPGRADE”: AMIGA (0) Determinar composición evento por evento a las más altas E (1) Comprender composición y el origen de la supresión a las más altas energías (2) Buscar componente protónica (10%?) a las más altas energias (3) Estudiar lluvias atmosféricas y producción hadrónica Detectores SSD (ASCII desarrollados en Bariloche) (Bertou, Berisso, Asorey, Arnaldi, Golup, Sofo-Haro) AMIGA (detectores de muones subterráneos) Nueva electrónica SD Extensión de FD

  37. AUGER “UPGRADE”: RADIO DETECTION

  38. PIERRE AUGER OBSERVATORY visit us: www.auger.org facebook 01/03/19 Diego Harari, Centro Atómico Bariloche, Argentina

  39. PIERRE AUGER OBSERVATORY visit us: www.auger.org facebook 01/03/19 Diego Harari, Centro Atómico Bariloche, Argentina

Recommend


More recommend