measurement of the uhecrs flux and composition with
play

Measurement of the UHECRs flux and composition with Pierre Auger - PowerPoint PPT Presentation

Measurement of the UHECRs flux and composition with Pierre Auger Observatory OBSERVATORY Ioana C. Mari s for the Pierre Auger Collaboration Outline Ultra high energy cosmic rays Pierre Auger Observatory Energy spectrum


  1. Measurement of the UHECRs flux and composition with Pierre Auger Observatory OBSERVATORY Ioana C. Mari¸ s for the Pierre Auger Collaboration

  2. Outline • Ultra high energy cosmic rays • Pierre Auger Observatory • Energy spectrum (calibration, combined spectrum) • Composition XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 2

  3. Introduction: Cosmic rays energy spectrum Equivalent c.m. energy s (GeV) pp 3 5 6 10 10 2 10 10 4 10 10 2 10 ] -1 sr HiRes I 1 -1 sec HiRes II AGASA -2 10 -2 E J(E) [m Auger 2007 -4 10 ATIC 10 -6 PROTON -8 RUNJOB 10 KASCADE -10 10 Fly’s Eye Stereo MSU -12 10 Akeno 10 -14 -16 10 13 15 16 17 18 19 20 10 11 10 12 10 10 14 10 10 10 10 10 10 Energy [eV] XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 3

  4. Introduction: Cosmic rays energy spectrum Equivalent c.m. energy s (GeV) pp 3 4 5 6 10 10 10 10 17 HiRes I 10 ] 1.5 HiRes II eV AGASA -1 sr Auger 2007- combined -1 16 10 sec PROTON -2 J(E) [m RUNJOB KASCADE Fly’s Eye Stereo 10 15 Akeno 2.5 Scaled flux E LHC (p-p) 14 10 Tevatron (p-p) 15 16 17 18 19 20 10 10 10 10 10 10 Energy [eV] XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 3

  5. Introduction: Cosmic rays energy spectrum Equivalent c.m. energy s (GeV) pp 3 4 5 6 10 10 10 10 17 HiRes I 10 ] 1.5 HiRes II eV AGASA -1 sr Auger 2007- combined -1 16 10 sec PROTON -2 J(E) [m RUNJOB KASCADE Fly’s Eye Stereo 10 15 Akeno 2.5 Scaled flux E spectral features: change in composition LHC (p-p) 14 10 nature of the sources Tevatron (p-p) transition from galactic to extragalactic origin 15 16 17 18 19 20 10 10 10 10 10 10 Energy [eV] XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 3

  6. Introduction: Cosmic rays energy spectrum Equivalent c.m. energy s (GeV) pp 3 4 5 6 10 10 10 10 17 HiRes I 10 ] 1.5 HiRes II eV AGASA -1 sr Auger 2007- combined -1 16 10 sec PROTON -2 J(E) [m RUNJOB KASCADE Greisen Zatsepin Kuzmin effect Fly’s Eye Stereo • p + γ CMB → ∆ + ( 1232 ) 10 15 Akeno 2.5 → p + π 0 → p γγ Scaled flux E → n + π + → pe + ν LHC (p-p) 14 10 15% energy loss / interaction ⇒ only Tevatron (p-p) nearby universe visible 15 16 17 18 19 20 10 10 10 10 10 10 Energy [eV] XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 3

  7. Introduction: Cosmic rays energy spectrum Equivalent c.m. energy s (GeV) pp 3 4 5 6 10 10 10 10 17 HiRes I 10 ] 1.5 HiRes II eV UHECRs Challenges AGASA -1 sr Auger 2007- combined • energy spectrum -1 16 10 sec PROTON • reduce stat. and syst. -2 J(E) [m RUNJOB uncertainties KASCADE Fly’s Eye Stereo 10 15 • composition Akeno 2.5 Scaled flux E • arrival directions LHC (p-p) 14 10 Tevatron (p-p) Pierre Auger Observatory 15 16 17 18 19 20 10 10 10 10 10 10 Energy [eV] XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 3

  8. Introduction: Measurement Techniques Surface detector(SD) • acceptance geometric • energy scale from air shower simulations • duty cycle ≈ 100 % Fluorescence detector(FD) • energies from longitudinal energy deposit, nearly calorimetric • acceptance from detector and atmosphere simulation • duty cycle ≈ 10 % Pierre Auger Observatory: acceptance and energy from data ! XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 4

  9. Pierre Auger Observatory: hybrid detector XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 5

  10. Surface detector (SD) 3000 km 2 , 1612 tanks deployed, 1584 with water, 1526 working XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 5

  11. Surface detector (SD) GPS antenna communications antenna electronics solar panel three 9 inch PMTs battery 12 tons of water XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 5

  12. Fluorescence detector (FD) Atmosphere monitoring • radio soundings (h, T, P), LED for end to end calibration, LASER shots, horizontal attenuation, IR cloud cameras, star light monitor XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 5

  13. Pierre Auger Observatory: event example 14 S [VEM peak] S [VEM peak] S [VEM peak] 500 10 12 elevation [deg] 30 10 400 8 8 300 6 6 200 4 4 100 2 25 2 0 0 0 150 200 250 300 350 400 450 150 200 250 300 350 400 450 150 200 250 300 350 400 450 t [25 ns] t [25 ns] t [25 ns] S [VEM peak] S [VEM peak] 3.5 S [VEM peak] 5 20 4 3.5 3 4 3 2.5 2.5 3 2 2 1.5 1.5 2 15 1 1 1 0.5 0.5 0 0 0 150 200 250 300 350 400 450 150 200 250 300 350 400 450 150 200 250 300 350 400 450 t [25 ns] t [25 ns] t [25 ns] 10 S [VEM peak] 1.8 S [VEM peak] 4 S [VEM peak] 3.5 1.6 3.5 3 1.4 3 1.2 2.5 2.5 5 1 2 2 0.8 1.5 1.5 0.6 1 1 0.4 0.2 0.5 0.5 0 0 0 150 200 250 300 350 400 450 150 200 250 300 350 400 450 150 200 250 300 350 400 450 0 t [25 ns] t [25 ns] t [25 ns] 150 155 160 165 170 175 180 S [VEM peak] 1.2 azimuth [deg] 1 Footprint on the camera 0.8 FADC traces (25 ns) 0.6 0.4 0.2 0 150 200 250 300 350 400 450 t [25 ns] Detector signal (VEM) vs time y [km] 47.5 47.4 47.3 47.2 47.1 63.5 63.6 63.7 63.8 63.9 Golden hybrid events: SD and FD x [km] XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 6

  14. Pierre Auger Observatory: event example Signal [VEM] χ 2 / NDoF: 6.833/ 7 4 10 3 10 S(1000 m) 2 dE/dX [PeV/(g/cm )] 2 10 10 20 30 40 50 0 10 400 1 500 1000 1500 2000 2500 3000 r [m] 600 slant depth [g/cm 800 Lateral distribution: S(1000 m) χ 2 /Ndf= 167.37/217 Longitudinal profile: energy 2 ] XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 6

  15. Pierre Auger Observatory: event example Transfer the FD energy to the SD high statistics data! Signal [VEM] (no simulations needed) χ 2 / NDoF: 6.833/ 7 4 10 3 10 S(1000 m) 2 dE/dX [PeV/(g/cm )] 2 10 10 20 30 40 50 0 10 400 1 500 1000 1500 2000 2500 3000 r [m] 600 X max ⇒ composition slant depth [g/cm 800 Lateral distribution: S(1000 m) χ 2 /Ndf= 167.37/217 Longitudinal profile: energy 2 ] XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 6

  16. S(1000 m) to Energy From ’Golden Hybrids’ (FD+SD) lateral particle distribution ↓ S (1000m) ↓ zenith angle correction (constant intensity cut method) ↓ S 38 ↓ FD energy ↓ E SD XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 7

  17. S(1000 m)- Attenuation in the atmosphere inclined shower vertical shower ground level inclined S(1000m) < vertical S(1000m) XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 8

  18. Zenith angle correction: S(1000m) ⇒ S 38 S(1000 m) [VEM] 60 55 S 38 50 45 40 35 polynomial 30 exponential 25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 cos 2 θ S 38 ( 1000 m ) = S ( 1000 m ) / f ( θ ) f ( θ ) = 1 + a · x + b · x 2 , x = cos 2 θ − cos 2 38 ◦ • correct all shower sizes to the same angle 38 ◦ XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 9

  19. Energy Calibration Stat. uncertainties: S 38 ◦ ( ≈ 16 % ) • shower to shower fluctuations • reconstruction E FD ( ≈ 8 % ) • reconstruction • atmosphere E = A · S B 38 ◦ XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 10

  20. Energy Scale Systematics Absolute Fluorescence Yield 14% Pressure dependence of Fluorescence Yield 1% Humidity dependence of Fluorescence Yield 1% Temperature dependence of Fluorescence Yield 5% FD absolute calibration 11% FD wavelength dependence response 3% Rayleigh scattering in atmosphere 1% Wavelength dependence of aerosol scattering 1% FD reconstruction method 10% Invisible energy 5% Total: 22% experimental uncertainties to be improved XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 11

  21. Vertical Energy Spectrum E[eV] × 18 19 × 19 20 × 20 3 10 10 2 10 10 2 10 )) -1 sr -13 4128 5165 km 2 sr year until ICRC 2007 -1 2450 s 1631 1185 0.8 × one year complete observatory -2 761 J /(m 560 -14 367 284 178 lg( E 125 79 -15 54 25 14 -16 5 5 Auger ICRC 2007, vertical 1 1 -17 18.5 19 19.5 20 20.5 lg(E/eV) Events (observed/expected) above 4 · 10 19 eV: 51 / ( 132 ± 9 ) above 10 20 eV: 2 / ( 30 ± 2 . 5 ) XLIII nd Rencontres de Moriond- EW, 2008 I. C. Mari¸ s for the Pierre Auger Collaboration 12

Recommend


More recommend