Welcome back. Today.
Welcome back. Today. Continue Sampling combinatorial structures.
Welcome back. Today. Continue Sampling combinatorial structures. Random Walks.
Welcome back. Today. Continue Sampling combinatorial structures. Random Walks. Spectral Gap/Mixing Time.
Welcome back. Today. Continue Sampling combinatorial structures. Random Walks. Spectral Gap/Mixing Time. Expansion/Spectral Gap: Cheeger
Welcome back. Today. Continue Sampling combinatorial structures. Random Walks. Spectral Gap/Mixing Time. Expansion/Spectral Gap: Cheeger Example: partial orders.
Welcome back. Today. Continue Sampling combinatorial structures. Random Walks. Spectral Gap/Mixing Time. Expansion/Spectral Gap: Cheeger Example: partial orders. Cheeger and Tight Examples.
Welcome back. Today. Continue Sampling combinatorial structures. Random Walks. Spectral Gap/Mixing Time. Expansion/Spectral Gap: Cheeger Example: partial orders. Cheeger and Tight Examples.
Cycle Tight example for Other side of Cheeger?
Cycle Tight example for Other side of Cheeger? µ 2
Cycle Tight example for Other side of Cheeger? µ 2 = 1 − λ 2 2
Cycle Tight example for Other side of Cheeger? µ 2 = 1 − λ 2 ≤ h ( G ) 2
Cycle Tight example for Other side of Cheeger? µ 2 = 1 − λ 2 � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) 2
Cycle Tight example for Other side of Cheeger? µ 2 = 1 − λ 2 � � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ 2
Cycle Tight example for Other side of Cheeger? µ 2 = 1 − λ 2 � � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ 2 Will show other side of Cheeger is tight. Cycle on n nodes.
Cycle Tight example for Other side of Cheeger? µ 2 = 1 − λ 2 � � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ 2 Will show other side of Cheeger is tight. Cycle on n nodes. Edge expansion:Cut in half.
Cycle Tight example for Other side of Cheeger? µ 2 = 1 − λ 2 � � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ 2 Will show other side of Cheeger is tight. Cycle on n nodes. Edge expansion:Cut in half. | S | = n 2 , | E ( S , S ) | = 2
Cycle Tight example for Other side of Cheeger? µ 2 = 1 − λ 2 � � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ 2 Will show other side of Cheeger is tight. Cycle on n nodes. Edge expansion:Cut in half. | S | = n 2 , | E ( S , S ) | = 2 → h ( G ) = 4 n .
Cycle Tight example for Other side of Cheeger? µ 2 = 1 − λ 2 � � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ 2 Will show other side of Cheeger is tight. Cycle on n nodes. Edge expansion:Cut in half. | S | = n 2 , | E ( S , S ) | = 2 → h ( G ) = 4 n . Show eigenvalue gap µ ≤ 1 n 2 .
Cycle Tight example for Other side of Cheeger? µ 2 = 1 − λ 2 � � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ 2 Will show other side of Cheeger is tight. Cycle on n nodes. Edge expansion:Cut in half. | S | = n 2 , | E ( S , S ) | = 2 → h ( G ) = 4 n . Show eigenvalue gap µ ≤ 1 n 2 . Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1.
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1.
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M .
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 n 2 ))
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 )
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 ) µ = λ 1 − λ 2 = O ( 1 n 2 )
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 ) µ = λ 1 − λ 2 = O ( 1 n 2 ) n = Θ( √ µ ) h ( G ) = 2
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 ) µ = λ 1 − λ 2 = O ( 1 n 2 ) n = Θ( √ µ ) h ( G ) = 2 µ 2
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 ) µ = λ 1 − λ 2 = O ( 1 n 2 ) n = Θ( √ µ ) h ( G ) = 2 µ 2 = 1 − λ 2 2
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 ) µ = λ 1 − λ 2 = O ( 1 n 2 ) n = Θ( √ µ ) h ( G ) = 2 µ 2 = 1 − λ 2 ≤ h ( G ) 2
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 ) µ = λ 1 − λ 2 = O ( 1 n 2 ) n = Θ( √ µ ) h ( G ) = 2 µ 2 = 1 − λ 2 � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) 2
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 ) µ = λ 1 − λ 2 = O ( 1 n 2 ) n = Θ( √ µ ) h ( G ) = 2 µ 2 = 1 − λ 2 � � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ 2
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. � i − n / 4 if i ≤ n / 2 x i = 3 n / 4 − i if i > n / 2 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 ) µ = λ 1 − λ 2 = O ( 1 n 2 ) n = Θ( √ µ ) h ( G ) = 2 µ 2 = 1 − λ 2 � � ≤ h ( G ) ≤ 2 ( 1 − λ 2 ) = 2 µ 2 Tight example for upper bound for Cheeger.
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1.
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. x n / 2 ≈ n 4 � i − n / 4 if i ≤ n / 2 ··· ··· x i = 3 n / 4 − i if i > n / 2 x 1 ≈ − n x n ≈ − n 4 4
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. x n / 2 ≈ n 4 � i − n / 4 if i ≤ n / 2 ··· ··· x i = 3 n / 4 − i if i > n / 2 x 1 ≈ − n x n ≈ − n 4 4 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. x n / 2 ≈ n 4 � i − n / 4 if i ≤ n / 2 ··· ··· x i = 3 n / 4 − i if i > n / 2 x 1 ≈ − n x n ≈ − n 4 4 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 n 2 ))
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. x n / 2 ≈ n 4 � i − n / 4 if i ≤ n / 2 ··· ··· x i = 3 n / 4 − i if i > n / 2 x 1 ≈ − n x n ≈ − n 4 4 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 )
Find x ⊥ 1 with Rayleigh quotient, x T Mx x T x close to 1. x n / 2 ≈ n 4 � i − n / 4 if i ≤ n / 2 ··· ··· x i = 3 n / 4 − i if i > n / 2 x 1 ≈ − n x n ≈ − n 4 4 Hit with M . − n / 4 + 1 / 2 if i = 1 , n ( Mx ) i = n / 4 − 1 if i = n / 2 x i otherwise → x T Mx = x T x ( 1 − O ( 1 → λ 2 ≥ 1 − O ( 1 n 2 )) n 2 ) µ = λ 1 − λ 2 = O ( 1 n 2 )
Recommend
More recommend