webs and polylogarithms
play

Webs and polylogarithms Mark Harley The University of Edinburgh - PowerPoint PPT Presentation

Webs and polylogarithms Mark Harley The University of Edinburgh Giulio Falcioni, Einan Gardi, MH, Lorenzo Magnea, Chris White [arXiv:1407.3477] Numbers and Physics, ICMAT, 18 September 2014 Outline Infrared Singularities Webs and


  1. Webs and polylogarithms Mark Harley The University of Edinburgh Giulio Falcioni, Einan Gardi, MH, Lorenzo Magnea, Chris White [arXiv:1407.3477] Numbers and Physics, ICMAT, 18 September 2014

  2. Outline • Infrared Singularities • Webs and subtracted webs • Computing webs • Interesting properties of subtracted webs • Open questions

  3. Singularities of Gauge Theories Loop level scattering amplitudes suffer from divergences Ultraviolet Infrared 1 Z d d k is log divergent as k µ → 0 k 2 ( k 2 + 2 p 1 · k )( k 2 − 2 p 2 · k ) Regularise with dimensional regularisation: d = 4 − 2 ✏ to regulate IR ✏ < 0

  4. Infrared Singularities — Cancellation The virtual infrared singularities cancel with those from real emissions (unlike UV) + + ✓ q 2 ◆ Large logarithm log − → µ 2 Phenomenology: necessary to compute for practical purposes Theory: Interesting insights into perturbative series and computations

  5. Eikonal Approximation In order to study the infrared singularities of a scattering amplitude we approximate − → External fields replaced Remove scale + spin ⇒ by Wilson lines Z ∞ ✓ ◆ β 2 6 = 0 , Φ β (0 , ∞ ) = P exp d λβ · A ( λβ µ ) ig s 0

  6. Factorisation This approximation gives the IR singularities of an amplitude through factorisation M = S ⊗ H The hard function , , is a matching coefficient containing H information from non-soft underlying amplitude S = h Φ β 1 Φ β 2 . . . Φ β n i 0 The universal soft function is a product of Wilson lines

  7. Exponentiation — QED The soft function exponentiates, drastically simplifying computation, e.g. QED form factor ✓ ◆ S QED = exp + + + . . . = 1 + + + + . . . Exponent is formed from only “connected” diagrams

  8. Exponentiation — QCD QCD is non-abelian (specifically SU(3) gauge theory) and therefore exponentiation is far less simple ✓ S QCD = P exp + + + ◆ + . . . Especially when considering more lines (matrix valued)

  9. Webs Webs are specific collections of diagrams which contribute to the exponent E.g. 1-2-1: ✓ ◆ = 1 w (2 , − 1) 2 f abc T a 1 T b 2 T c 3 − 1-2-1 1-1-1-3: 1-1-1-3 = − 1 w (3 , − 1) 6 f ade f bce T a 1 T b 2 T c 3 T d 4 (2 A − B − C + 2 D − E − F ) − 1 6 f abe f cde T a 1 T b 2 T c 3 T d 4 ( A + B − 2 C + D − 2 E + F ) Webs appear in exponent with “connected” colour factors

  10. Web combinatorics The exponent takes the form of the diagrammatic colour and kinematic factors mixed by the “Mixing Matrix” X F ( D ) R D,D 0 C ( D 0 ) W ≡ D,D 0 Recent studies have found interesting links between the combinatorics of these matrices and partially ordered sets (posets) Dukes, Gardi, McAslan, Scott, White [arXiv:1310.3127] Dukes, Gardi, Steingrimsson, White [arXiv:1301.6576]

  11. Renormalising the soft function The Eikonal approximation results in further UV divergences due to introduction of cusp d d k Z ∝ k 2 β 1 · k β 2 · k Need to renormalise the soft function S ren. ( ↵ ij , ↵ s ( µ 2 ) , ✏ IR , µ ) = S UV + IR Z ( ↵ ij , ↵ s ( µ 2 ) , ✏ UV , µ ) = Z ( ↵ ij , ↵ s ( µ 2 ) , ✏ UV , µ ) Can determine the UV poles by introducing IR regulator S ren. ( ↵ ij , ↵ s ( µ 2 ) , µ, m ) = S ( ↵ ij , ↵ s ( µ 2 ) , ✏ , m ) Z ( ↵ ij , ↵ s ( µ 2 ) , ✏ , µ )

  12. Renormalisation and the exponent In QCD the soft function and renormalisation factor are matrices S = exp( w ( ✏ )) Z = exp( ⇣ ( ✏ , µ )) , X w ( n,k ) ↵ n s ✏ k w = n,k Applying BCH formula and some physical constraints, Γ (1) = − 2 w (1 , − 1) h w (1 , − 1) , w (1 , 0) i Γ (2) = − 4 w (2 , − 1) − 2 Γ (3) = . . . dZ X Γ ( n ) α n d ln µ − Z Γ Γ = , s n Mitov, Sterman, Sung (2009-2010) Gardi, Smillie, White [arXiv:1108.1357]

  13. Subtracted webs A subtracted web is a web combined with a relevant set of commutators (1 , − 1) (2 , − 1) (1 , 0) ◆ � ✓  1 w (2) e + 1-2-1 = − 4 − , 2 • Renormalisation factor, , can not have dependance on IR Z regulator therefore neither do subtracted webs • Owing to this physical symmetries hidden by regularisation are restored • Free of subdivergences (only physically relevant single pole)

  14. Multiple Gluon Exchange Webs (MGEWs) We wish to specialise to a subclass of simple webs involving only multiple gluon exchanges Easily manifest themselves as iterated multiple- polylogarithmic integrals Lend themselves naturally to development of automated techniques

  15. Kinematics: Two line, colour-singlet case β 1 σ IR regulated one loop τ Exponential regulator β 2 } Z ∞ Z ∞ dt ( − ( s � 1 − t � 2 ) 2 ) ✏ − 1 e − m √ 1 s − m √ � 2 � 2 w (1) 2 ↵ s µ 2 ✏ N � 1 · � 2 1-1 = T a 1 T a 2 t ds 0 0 Z ∞ Z ∞ d � ( � 2 + ⌧ 2 − � 12 ⌧� ) ✏ − 1 e − ⌧ − � = T a 1 T a 2  � 12 d ⌧ γ 12 = 2 β 1 · β 2 0 0 Z 1 p β 2 1 β 2 2 = T a 1 T a 2  � 12 Γ (2 ✏ ) dx P ( x, � 12 ) 0 P ( x, γ 12 ) = ( x 2 + (1 − x ) 2 − γ 12 x (1 − x )) ✏ − 1 σ λ = τ + σ x = , σ + τ Korchemsky, Radyushkin (1987) Recent formulation in terms of iterated integrals Kidonakis (2009); Henn, Huber (2012) Three loop results recently obtained Grozin, Henn, Korchemsky, Marquard [arXiv:1409.0023]

  16. Kinematics continued Let’s choose a more convenient kinematic variable γ ij = 2 β i · β j = − α ij − 1 p α ij β 2 1 β 2 2 Z 1 threshold lightlike straight-line w (1 , − 1) = γ 12 dx P 0 ( x, γ 12 ) 4 π 0 ◆ Z 1 ✓ = − 1 1 1 α 12 + dx x 2 + (1 − x ) 2 + x (1 − x )( α 12 + 1 / α 12 ) 4 π α 12 0 Z 1 1 + α 2 ✓ ◆ = 1 1 1 12 dx − 1 − α 2 1 4 π x + α 12 x − 0 12 1 − α 12 1 − α 12 r ( α ) = 1 + α 2 = 1 4 π 2 r ( α 12 ) ln( α 12 ) 1 − α 2 symmetry is realised through interplay between rational and logarithm α → 1 / α This structure generalises to any MGEW: products of multiplying multiple-polylogs r ( α ij )

  17. General form of MGEW and methodology Now for MGEW diagrams Z 1 n  � F ( n ) =  n Γ (2 n ✏ ) � ( n ) Y dx k � k P ( x, � k ) D ( { x i } ; ✏ ) 0 k =1 Z 1  n − 1 � � ( n ) Y dy k (1 − y k ) − 1+2 ✏ y − 1+2 k ✏ D ( { x i } ; ✏ ) = Θ D [ { x k , y k } ] k 0 k =1 t 1 t 2 t 3 t 4 θ ( t 1 − t 2 ) θ ( t 2 − t 3 ) θ ( t 3 − t 4 ) � ( n ) � ( n,k ) X ( { x i } ) ✏ k Has a Laurent expansion in , , D ( x i ; ✏ ) = ✏ D k φ ( n,k ) where is a purely transcendental function of weight ( { x i } ) n − 1 + k D multiplying, in some cases, Heaviside functions of {x_i} Gardi [arXiv:1310.5268]

  18. Computing webs We combine integrands to directly obtain subtracted web (1 , − 1) (2 , − 1) (1 , 0) ◆ � ✓  1 w (2) e + 1-2-1 = − 4 − , 2 General subtracted MGEW: ✓ ◆ Z 1  ✓ ◆� n n Y Y 1 1 w ( n ) = c ( n ) r ( α k ) G ( { x i } ) Θ [ { x i } ] e dx k − i 1 x k + α k x k − 0 1 − α k 1 − α k k =1 k =1 Conjecture: Integrand factorises such that result can be written as sums of products of polylogarithms, each dependent upon a single cusp angle ✓ q ( x, α ) ◆ ✓ ◆ Z 1 1 x ln m e dx γ P 0 ( x, γ ) ln k ln l M k,l,m ( α ) = q ( x, α ) r ( α ) x 2 1 − x 0 ✓ ◆ ✓ ◆ ✓ 1 ◆ ✓ ◆ 1 α α ln q ( x, α ) = ln + ln x + ln e q ( x, α ) = ln − ln x + x − x − 1 − α 1 − α 1 − α 1 − α

  19. MGEW Basis  ✓ 4 M 0 , 1 , 1 ( α 23 ) M 1 , 0 , 0 ( α 13 ) + 1 w (3) (1 , 2 , 3) = . . . + c (3) 3 r ( α 13 ) r 2 ( α 23 ) M 2 1 , 0 , 0 ( α 23 ) − M 0 , 0 , 0 ( α 23 ) M 2 , 0 , 0 ( α 23 ) e 4 8 ◆ � − 1 12 M 4 0 , 0 , 0 ( α 23 ) + 2 M 0 , 0 , 0 ( α 23 ) M 0 , 2 , 0 ( α 23 ) M 0 , 0 , 0 ( α 13) + . . . M 0 , 0 , 0 ( α ) = 2 ln( α ) − 2 log 2 ( α ) − 2 ζ (2) M 1 , 0 , 0 ( α ) = 2 Li 2 ( α 2 ) + 4 log( α ) log 1 − α 2 � � Li 2 ( α 2 ) + log 2 ( α )  � M 0 , 1 , 1 ( α ) = 2 Li 3 ( α 2 ) − 2 log( α ) + ζ (2) − 2 ζ (3) 3 M 0 , 2 , 0 ( α ) = 2 3 log 3 ( α ) + 4 ζ (2) log( α )  1 − α 2 � � log 2 ( α ) Li 3 ( α 2 ) + 2Li 3 1 − α 2 � � � M 2 , 0 , 0 ( α ) = − 4 − 8 log + 8 3 log 3 ( α ) + 8 ζ (2) log( α ) + 4 ζ (3)

  20. Basis conjecture Holds for every MGEW we have studied . . . ?

  21. Term from 1-2-3 (unsubtracted) Z 1 Z 1 dx 2 γ 1 P 0 ( x 1 , γ 1 ) γ 2 P 0 ( x 2 , γ 2 ) Li 2 ( − 1 − x 1 ) = . . . + dx 1 x 2 0 0

  22. Computing Webs — Method 2 Integrating webs (brute force): • After shifting to variables, propagators factorise and integrals are in plain α ij “dlog” form after expansion in ✏ ◆ Z 1 n n ✓  ✓ ◆� 1 1 F ( n, − 1) Y Y = N r ( α k ) T ( { x i } ) Θ D [ { x i } ] dx k − D 1 x k + α k x k − 0 1 − α k 1 − α k k =1 k =1 � ( n ) MPLs from and logs from expansion of T ( { x i } ) D ( { x i } , ✏ ) P ( x k , γ k ) • Integrate to get higher weight MPLs (depending on multiple angles) • Combine with combinatoric factors and commutators to get sub. web • Look for relations between MPLs which don’t factorise

  23. Term from 1-2-3 (unsubtracted) Z 1 Z 1 dx 2 γ 1 P 0 ( x 1 , γ 1 ) γ 2 P 0 ( x 2 , γ 2 ) Li 2 ( − 1 − x 1 ) = . . . + dx 1 x 2 0 0

  24. MGEW Basis symbols α η = 1 − α 2 ✓ q ( x, α ) ◆ ✓ ◆ Z 1 1 x ln m e dx γ P 0 ( x, γ ) ln k ln l M k,l,m ( α ) = q ( x, α ) r ( α ) x 2 1 − x 0

Recommend


More recommend